$a_{n}=\frac{n}{3 n+2} \quad$ remember that $\quad \frac{\frac{1}{n}}{\frac{1}{n}}=1$
$\lim _{n \rightarrow \infty} \frac{n}{3 n+2}$
$\lim _{n \rightarrow \infty} \frac{\frac{1}{n} n}{\frac{1}{n}(3 n+2)}=\lim _{n \rightarrow \infty} \frac{1}{\left(\frac{3 n}{n}+\frac{2}{n}\right)}=\lim _{n \rightarrow \infty} \frac{1}{\left(3+\frac{2}{n}\right)}$

$$
\frac{\lim _{\mathrm{n} \rightarrow \infty} 1}{\lim _{\mathrm{n} \rightarrow \infty} 3+\lim _{\mathrm{n} \rightarrow \infty} \frac{2}{\mathrm{n}}}=\frac{1}{3+0}=\frac{1}{3} \quad \text { converges }
$$

You can achieve the same result to dopping the 2 because it's very small compared to $3 n$ when n is very large.
$\lim _{n \rightarrow \infty} \frac{n}{3 n+2}=\lim _{n \rightarrow \infty} \frac{n}{3 n}=\lim _{n \rightarrow \infty} \frac{1}{3}=\frac{1}{3}$

$$
\begin{aligned}
& a_{n}=2-\frac{1}{n} \\
& \lim _{n \rightarrow \infty}\left(2-\frac{1}{n}\right)=\lim _{n \rightarrow \infty} 2-\lim _{n \rightarrow \infty} \frac{1}{n}=2-0=2
\end{aligned}
$$

This means that the sequence converges.

$\begin{array}{ll}\text { FormalApproach } \\ a_{n}=\frac{n^{4}}{1+n^{4}} & \text { remember that } \quad \frac{\frac{1}{n^{4}}}{\frac{1}{n^{4}}}=1\end{array}$
$\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{4}} n^{4}}{\frac{1}{n^{4}}\left(1+n^{4}\right)}=\lim _{n \rightarrow \infty} \frac{1}{\left(\frac{1}{n^{4}}+\frac{n^{4}}{n^{4}}\right)}=\lim _{n \rightarrow \infty} \frac{1}{\left(\frac{1}{n^{4}}+1\right)}$
$\lim 1$
$\frac{n \rightarrow \infty}{\lim _{n \rightarrow \infty} \frac{1}{n^{4}}+\lim _{n \rightarrow \infty} 1}=\frac{1}{0+1}=\frac{1}{1}=1$ converges

Youcan achieve the same result to dopping the 1 because it's very small compared to terms with n .
$\lim _{n \rightarrow \infty} \frac{n^{4}}{1+n^{4}}=\lim _{n \rightarrow \infty} \frac{n^{4}}{n^{4}}=\lim _{n \rightarrow \infty} \frac{1}{1}=1$

$$
\begin{aligned}
& a_{n}=\cos \left(\frac{n \pi}{2}\right) \\
& a_{1}=\cos \left(\frac{1 \cdot \pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)=0 \\
& a_{2}=\cos \left(\frac{2 \pi}{2}\right)=\cos (\pi)=-1 \\
& a_{3}=\cos \left(\frac{3 \pi}{2}\right)=0 \\
& a_{4}=\cos \left(\frac{4 \pi}{2}\right)=\cos (2 \pi)=1 \\
& a_{5}=\cos \left(\frac{5 \pi}{2}\right)=0
\end{aligned}
$$

You can see that values jump between -1 and 1. Thismeans the limit does not exist.

$$
\begin{aligned}
& a_{n}=\frac{\mathrm{an}^{2}+\mathrm{bn}}{\mathrm{cn}^{3}+\mathrm{dn}} \quad \text { remember that } \frac{\frac{1}{n^{3}}}{\frac{1}{n^{3}}}=1 \\
& \lim _{\mathrm{n} \rightarrow \infty} \frac{\frac{1}{n^{3}}\left(\mathrm{an}^{2}+\mathrm{bn}\right)}{\frac{1}{n^{3}}\left(\mathrm{cn}^{3}+\mathrm{bn}\right)}=\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{\frac{\mathrm{an}^{2}}{\mathrm{n}^{3}}+\frac{\mathrm{bn}}{\mathrm{n}^{3}}}{\frac{\mathrm{cn}^{3}}{n^{3}}+\frac{\mathrm{bn}}{n^{3}}}\right)=\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{\frac{\mathrm{a}}{\mathrm{n}}+\frac{\mathrm{b}}{\mathrm{n}^{2}}}{\mathrm{c}+\frac{\mathrm{b}}{n^{2}}}\right)
\end{aligned}
$$

$$
\frac{\lim _{n \rightarrow \infty} \frac{a}{n}+\lim _{n \rightarrow \infty} \frac{b}{n^{2}}}{\lim _{n \rightarrow \infty} c+\lim _{n \rightarrow \infty} \frac{b}{n^{2}}}=\frac{0+0}{c+0}=\frac{0}{c}=0
$$

This means that this sequence corverges. You can also findthis same result by dropping bn and dn because these terms are insignificant relative to the higest power of n.
$\lim _{n \rightarrow \infty} \frac{\mathrm{an}^{2}+\mathrm{bn}}{\mathrm{cn}^{3}+\mathrm{dn}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{an}^{2}}{\mathrm{cn}^{3}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{a}}{\mathrm{cn}}=0$

$$
a_{n}=e^{\frac{1}{n}} \lim _{n \rightarrow \infty} e^{\frac{1}{n}}=e^{\lim _{n \rightarrow \infty} \frac{1}{n}}=e^{0}=1
$$

Youcan place in the limit in the exponent because the e funcion is continous. This means that this sequence corverges. You can visualize this process in a clever way in the graph shown above. Just follow the arrows to see the process of taking the limit Look at the picture below.

1) n goes to infinity
2) 1 divide by ngoes to zero
3) e to the 1 over n goes to 1

$a_{n}=\frac{2^{n+1}}{4^{n}}$
$a_{n}=\frac{2^{n} \cdot 2^{1}}{\left(2^{2}\right)^{n}}=\frac{2^{n} \cdot 2}{\left(2^{n}\right)^{2}}=\frac{2^{n} \cdot 2}{2^{n} \cdot 2^{n}}=\frac{2}{2^{n}}$
$\lim _{\mathrm{n} \rightarrow \infty} \frac{2}{2^{\mathrm{n}}}=\frac{\lim _{\mathrm{n} \rightarrow \infty} 2}{\lim _{\mathrm{n} \rightarrow \infty} 2^{\mathrm{n}}}=\frac{2}{\infty}=0$
This means the sequence corverges.

$a_{n}=\tan ^{-1}\left(\frac{1}{n}\right)$
$\lim _{\mathrm{n} \rightarrow \infty}\left[\tan ^{-1}\left(\frac{1}{\mathrm{n}}\right)\right]=\tan ^{-1}\left(\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}}\right)=\tan ^{-1}(0)=0$
Because the inverse tangent function is continous, you can move the limit into the function, and then simply take the inverse tangent of the limit. This is illustrated visually below. Just follow the numbers in the pic ture to see the flow.

$a_{n}=\sqrt{\frac{n}{3 n+2}}$
$\lim _{n \rightarrow \infty} \sqrt{\frac{n}{3 n+2}}=\sqrt{\lim _{n \rightarrow \infty} \frac{n}{3 n+2}}$
$\sqrt{\lim _{n \rightarrow \infty} \frac{\frac{1}{n} n}{\frac{1}{n}(3 n+2)}}=\sqrt{\lim _{n \rightarrow \infty} \frac{1}{\left(\frac{3 n}{n}+\frac{2}{n}\right)}} \quad$ Remember that $\frac{\frac{1}{n}}{\frac{1}{n}}=1$
$\sqrt{\frac{\lim _{n \rightarrow \infty} 1}{\lim _{n \rightarrow \infty} 3+\lim _{n \rightarrow \infty} \frac{2}{n}}}=\sqrt{\frac{1}{3+0}}=\sqrt{\frac{1}{3}}=\frac{\sqrt{1}}{\sqrt{3}}=\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3}$

Because the square root function is continous, you can bring the limit inside the square root function, and then take the square root of the limit.

$$
\mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}} \cdot \frac{\mathrm{n}}{\mathrm{n}^{2}+1}
$$

Take the absolute value

$$
\left|\mathrm{a}_{\mathrm{n}}\right|=\left|(-1)^{\mathrm{n}} \cdot \frac{\mathrm{n}}{\mathrm{n}^{2}+1}\right|=\left|(-1)^{\mathrm{n}}\right| \cdot\left|\frac{\mathrm{n}}{\mathrm{n}^{2}+1}\right|=\frac{\mathrm{n}}{\mathrm{n}^{2}+1}
$$

The sequence converges to 0 in absolute value.
$\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{n}}{\mathrm{n}^{2}+1}=\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{n}}{\mathrm{n}^{2}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}}=0$
This tells us that the original sequence also converges to the number 0 .

$$
a_{n}=\frac{(-1)^{n} \cdot n^{2}}{n^{2}+1}
$$

The presence of -1 to the n simply changes the sign of the terms, but because the denominator is of bigger degree than the numerator, the sequence converges to 0 .

$$
\mathrm{a}_{\mathrm{n}}=\frac{(-1)^{\mathrm{n}} \cdot \mathrm{n}^{2}}{\mathrm{n}^{2}+1}
$$

Take the absolute value, as shown below.

$$
\left|\frac{(-1)^{n} \cdot n^{2}}{n^{2}+1}\right|=\left|(-1)^{n}\right| \cdot\left|\frac{n^{2}}{n^{2}+1}\right|=1 \cdot \frac{n^{2}}{n^{2}+1}=\frac{n^{2}}{n^{2}+1}
$$

Now take the limit.
$\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+1}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}}=\lim _{n \rightarrow \infty} 1=1$

This sequence will NOT converge because the limit in absolute value is 1 , and the presence of $(-1)^{\mathrm{n}}$ This causes thes values to start bouncing between -1 and 1, as shown below. The left graph shows the absolute value, and the right graph shows the original, which clearly bounces and therefore does not converge.

$a_{n}=\cos \left(\frac{1}{n}\right)$
You can bring the limit inside because the cosine function is cont.
$\lim _{\mathrm{n} \rightarrow \infty} \cos \left(\frac{1}{\mathrm{n}}\right)=\cos \left(\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}}\right)=\cos (0)=1$
This result tells us that the sequence converges.

$$
a_{n}=\frac{(2 n)!}{(2 n+1)!}
$$

First we simplify the expression using a basic property of factorials.

$$
a_{n}=\frac{(2 \cdot n)!}{(2 n+1) \cdot(2 n+1-1)!}=\frac{(2 n)!}{(2 n+1)(2 n)!}=\frac{1}{2 n+1}
$$

Now we can take the limit easily.

$$
\lim _{n \rightarrow \infty} \frac{1}{2 n+1}=\lim _{n \rightarrow \infty} \frac{1}{2 n}=\frac{1}{2} \cdot \lim _{n \rightarrow \infty} \frac{1}{n}=\frac{1}{2}(0)=0
$$

$$
a_{n}=\tan ^{-1}(2 n)
$$

Because the inverse tangent function is continous, you can bring the limit inside, and just take the inverse tangent of infinity.

$$
\lim _{n \rightarrow \infty}\left\lceil\tan ^{-1}(2 n)\right\rceil=\tan ^{-1}\left[\lim _{n \rightarrow \infty}(2 n)\right]=\tan ^{-1}(\infty)=\frac{\pi}{2}
$$

This means that the sequence converges to $\frac{\pi}{2}$

$$
a_{n}=\frac{\ln (n)}{\ln (10 n)}
$$

First rewrite the expression using a basic law of logs.

Now take the limit.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\ln (n)}{\ln (10)+\ln (n)}=\lim _{n \rightarrow \infty}\left[\frac{\frac{1}{\ln (n)}}{\frac{1}{\ln (n)}} \frac{(\ln (n))}{\ln (10)+\ln (n)}\right] \\
& \lim _{n \rightarrow \infty}\left(\frac{\frac{1}{\ln (n)} \cdot \ln (n)}{\frac{\ln (10)}{\ln (n)}+\frac{\ln (n)}{\ln (n)}}\right)=\lim _{n \rightarrow \infty} \frac{1}{\frac{\ln (10)}{\ln (n)}+1}=\frac{\lim _{n \rightarrow \infty}}{\lim _{n \rightarrow \infty} \frac{\ln (10)}{\ln (n)}+\lim _{n \rightarrow \infty} 1}=\frac{1}{0+1}=1
\end{aligned}
$$

$$
a_{n}=n^{-1} \cdot e^{n}
$$

First rewrite, as shown below.

$$
\mathrm{a}_{\mathrm{n}}=\frac{\mathrm{e}^{\mathrm{n}}}{\mathrm{n}}
$$

Because this is of the form $\frac{\infty}{\infty}$ you cantreat this as a function.
You can use the rule of L'Hopital to transition from step 1 to step 2 below.
$\lim _{x \rightarrow \infty} \frac{e^{x}}{x}=\lim _{x \rightarrow \infty} \frac{e^{x}}{1}=\infty$

Therefore we can conclude that this sequence diverges.
$a_{n}=n \cdot \sin \left(\frac{n \pi}{2}\right)$
$a_{1}=1 \cdot \sin \left(\frac{1 \cdot \pi}{2}\right)=\sin \left(\frac{\pi}{2}\right)=1$
$a_{2}=2 \cdot \sin \left(\frac{2 \pi}{2}\right)=2 \cdot \sin (\pi)=0$
$a_{3}=3 \cdot \sin \left(\frac{3 \cdot \pi}{2}\right)=3(-1)=-1$
$a_{4}=4 \sin \left(\frac{4 \cdot \pi}{2}\right)=4 \cdot \sin (2 \pi)=4 \cdot 0=0$
$a_{5}=5 \sin \left(\frac{5 \pi}{2}\right)=5 \cdot 1=5$

As you can see from the pattern above, the values change in sign, and become either big and positive, or very negative. The change in sign comes from the presence of sine and the growth towards positve or negative infinity comes from the presence of the n in front of the sine. Therefore, this sequence diverges.

Begin with the basic fact that the square of sine is always between 0 and 1 , as shown below.

$$
0 \leq \sin ^{2}(n) \leq 1
$$

Now divide everthing you see by $\quad 2^{\text {n }}$

$$
\frac{0}{2^{n}} \leq \frac{\sin ^{2}(n)}{2^{n}} \leq \frac{1}{2^{n}}
$$

$$
0 \leq \frac{\sin ^{2}(n)}{2^{n}} \leq \frac{1}{2^{n}}
$$

Now take the limit of both sides. This is an application of the squeeze theorem.

$$
\begin{aligned}
& \lim _{\mathrm{n} \rightarrow \infty} 0=0 \\
& \lim _{\mathrm{n} \rightarrow \infty} \frac{1}{2^{n}}=0
\end{aligned}
$$

Because the square of the sine lies between these, it's limit is also 0 .

$$
a_{n}=\ln (n+2)-\ln (2)
$$

First rewrite using a basic law of logs.

$$
\mathrm{a}_{\mathrm{n}}=\ln \left(\frac{\mathrm{n}+2}{\mathrm{n}}\right)=\ln \left(\frac{\mathrm{n}}{\mathrm{n}}+\frac{2}{\mathrm{n}}\right)=\ln \left(1+\frac{2}{\mathrm{n}}\right)
$$

Because the in functions is continous, bring the limit inside when takin it.

$$
\begin{aligned}
& \lim _{\mathrm{n} \rightarrow \infty} \ln \left(1+\frac{2}{\mathrm{n}}\right)=\ln \left[\lim _{\mathrm{n} \rightarrow \infty}\left(1+\frac{2}{\mathrm{n}}\right)\right]=\ln \left(\lim _{\mathrm{n} \rightarrow \infty} 1+\lim _{\mathrm{n} \rightarrow \infty} \frac{2}{\mathrm{n}}\right) \\
& \ln (1+0)=\ln (1)=0
\end{aligned}
$$

Therefore we can conclude that this sequence is convergent.
$a_{n}=\frac{\cos (2 n)}{1+n}$

Begin with the basic fact that $\cos (2 n)$ is always between -1 and 1 .
$-1 \leq \cos (2 n) \leq 1$
Now divide every term by $1+n$, as shown below.
$\frac{-1}{1+n} \leq \frac{\cos (2 n)}{1+n} \leq \frac{1}{1+n}$

Now we apply the squeeze theorem.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{-1}{1+n}=0 \\
& \lim _{n \rightarrow \infty} \frac{1}{1+n}=0
\end{aligned}
$$

Because the sequence we're given lies between these two, it also corverges to 0 .

$a_{n}=\sqrt[n]{2^{1+5 n}}$
First rewrite, as shown below.
$a_{n}=\sqrt{2}^{2^{1} \cdot 2^{5 n}}=\left(2^{1} \cdot 2^{5 n}\right)^{\left(\frac{1}{n}\right)}=2^{\frac{1}{n}} \cdot 2^{5 n \cdot \frac{1}{n}}=2^{\frac{1}{n}} \cdot 2^{5}=32 \cdot 2^{\frac{1}{n}}$

Now you can take the limit. Here, you can put the limit in the exponent because the exponential function shown is continous.

$$
\lim _{n \rightarrow \infty}\left(32 \cdot 2^{\frac{1}{n}}\right)=32 \cdot \lim _{n \rightarrow \infty} 2^{\frac{1}{n}}=32 \cdot 2^{\lim _{n \rightarrow \infty} \frac{1}{n}}=32 \cdot 2^{0}=32 \cdot 1=32
$$

Therefore we can conclude that this sequence converges.
$a_{n}=\frac{\tan ^{-1}(n)}{n}$
Begin with the basic fact that when n is zero or more, the irverse tangent function lies between the limits shown below.
$0 \leq \tan ^{-1}(\mathrm{n}) \leq \frac{\pi}{2}$

Now divide everything you see by n. Remember, nispositive, so you keep the inequality signs you see. There is no need to change the direction.

$$
\begin{aligned}
& \frac{0}{n} \leq \frac{\tan ^{-1}(\mathrm{n})}{\mathrm{n}} \leq \frac{\frac{\pi}{2}}{\mathrm{n}} \\
& 0 \leq \frac{\tan ^{-1}(\mathrm{n})}{\mathrm{n}} \leq \frac{\pi}{2 \mathrm{n}}
\end{aligned}
$$

Now we apply the squeeze theorem, getting the limits shown below. Because ours is between these, it also converges to 0 .

$$
\lim \quad 0=0
$$

$$
0 \rightarrow \infty
$$

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{\pi}{2 \mathrm{n}}=0
$$

Rewrite as a function. $y=x^{x}$
Take the natural \log of both sides $\quad \ln (y)=\ln \left(\frac{1}{x}\right)$
Bring the $\frac{1}{x}$ down $\ln (y)=\frac{1}{x} \ln (x)$
Now take the limit of both sides. $\quad \lim _{\mathrm{n} \rightarrow \infty} \ln (\mathrm{y})=\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{\ln (\mathrm{x})}{\mathrm{x}}\right)$

On the right side we have infinity
over infinity, so strike hard with L'Hopital

Now exponentiate both sides.

$$
\mathrm{e}^{\lim _{\mathrm{n} \rightarrow \infty} \ln (\mathrm{y})}=\mathrm{e}^{0}
$$

Because in is contious, bring the limit inside

e and In are inverses so they cancel

$$
\lim _{n \rightarrow \infty} y=1
$$

Replace y with its definiotin in terms of $x \quad \lim _{n \rightarrow \infty} x^{\frac{1}{x}}=1$
This means our sequence also converges to 1.

$$
a_{n}=3^{1-\frac{1}{n}}
$$

The following sequence of steps is not magical. It's just using the continuaity of the function.
$\lim ^{1-\frac{1}{n}}=3^{\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)}=3^{\lim _{n \rightarrow \infty} 1-\lim _{n \rightarrow \infty} \frac{1}{n}}=3^{1-0}=3$
$\mathrm{n} \rightarrow \infty$

This means our sequence converges to 3 .

$$
\begin{aligned}
& a_{n}=e^{\cos \left(\frac{1}{n}\right)} \\
& \lim _{n \rightarrow \infty} e^{\cos \left(\frac{1}{n}\right)}=e^{\lim _{n \rightarrow \infty} \cos \left(\frac{1}{n}\right)}=e^{\cos \left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)}=e^{\cos (0)}=e^{1}=e
\end{aligned}
$$

Because the natural exponential function, and cosien are both continous, you can move the limit into the cosine function, and work as shown above.

You can access the library of 500 HD Math videos here:
http://www.virtuallymath.com/category/learning-resources/
Below is a list of my online programming courses, and my other kindle booklets.

```
Learn Microsoft C# Programming:
http://www.udemy.com/csharpbasics
Use Coupon:
https://www.udemy.com/csharpbasics/?
couponCode=getitnow
There are 151 Students Enrolled Already
Learn the Fundamentals of JavaScript:
http://www.udemy.com/learnjavascript
Learn the Fundamentals of Visual
Basic.NET
http://www.udemy.com/mastervbdotnet
Adding Fractions Visually
http://www.amazon.com/dp/B00IWL9GWM
Basic Probability, A Pictorial Approach
http://www.amazon.com/dp/B00HZUUZJE
6 5 \text { Detailed Examples of Using the Chain}
Rule
http://www.amazon.com/dp/B00HY066ZS
1 1 \text { Detailed Examples of Tricky Limits in}
Calculus
http://www.amazon.com/dp/B00IGNAVB6
```

Topic: Writing and Manipulating One Variable Expressions http://www.amazon.com/dp/B00HVTWFDI
35 Detailed Examples of U-Substitution in Integrals http://www.amazon.com/dp/B00HXR5PTO
Manipulating One Variable Equestions, Pictorial Approach http://www.amazon.com/dp/B00I4GJASU
Understanding Scalar and Vector Projections http://www.amazon.com/dp/B00I1QZ2W6
25 Detailed Examples of Fnding Function Averages http://www.amazon.com/dp/B00IB6RMOW
Understanding Partial Derivatives http://www.amazon.com/dp/B00I7H0RXI
Understanding ANOVA http://www.amazon.com/dp/B00I89Y9L6
46 Examples of Finding Limits with L'hopital http://www.amazon.com/dp/B00I9RGD2K
22 Detailed Examples of Improper Integrals, with 27 Pictures http://www.amazon.com/dp/B00ICTMNW4
Understanding Word Problems http://www.amazon.com/dp/B00IKZ80VS
Understanding and Finding Partial Derivatives http://www.amazon.com/dp/B00IEP7DDA
Manipulating Equations in Two or Three

Variables http://www.amazon.com/dp/B00HPQZ9VM
27 Detailed Examples of Sequence Limits http://www.amazon.com/dp/B00IE08UUU
23 Detailed Examples of Integration by Parts http://www.amazon.com/dp/B00IF0R0VE
Power Series Examples http://www.amazon.com/dp/B00IJEMKHK
Drawing Parametric Curves, a Sequential Approach http://www.amazon.com/dp/B00IIHKOYE
17 Detailed Examples of Solving Absolute Value Equations http://www.amazon.com/dp/B00IJRXWHO
Understanding Concentration Problems Visually http://www.amazon.com/dp/B00I12PTVO
Understanding the Coefficient of Determination https://www.amazon.com/dp/B00I6SRSLM
12 Examples of the Power Rule in Calculus http://www.amazon.com/dp/B00ILHS6T6

