Solve $2 x=8$

1. Notice that 2 is multiplying x. The inverse or opposite operation is division. So divide both sides by 2 .

$$
\frac{2 x}{2}=\frac{8}{2}
$$

2. Simplify the step above by noting that $\frac{2}{2}=1$
so in front of the x is now the number 1 .

$$
1 \mathrm{x}=4
$$

3. It is convention to write 1 x as just x .

So the final result is $x=4$
4. Now you can confirm that this is the correct value of x by replacing x with 4 and showing the left side equals the right side. This confirms that $x=4$ is the correct solution.
$2(4)=8$
Solve $3 x=9$

Solve $x-4=10$

1. Because 4 is being subtracted from x, we reverse this operation by adding 4 to both sides.

$$
x-4+4=10+4
$$

2. Because $-4+4=0$, all that remains on the left side is x .
$\mathrm{x}=10+4$
3. Because $10+4=14$, we can conclude that $x=14$ is the solution.
4. To check, we can replace x with 14 , and confirm that the left side equals the right side. This confirms that $x=14$ is the correct value.
$14-4=10$
$10=10$
Solve $x+4=12$

Solve $2 x+4=8$

1. You can begin by subtracting 4 from both sides of the equation.
$2 \mathrm{x}+4-4=8-4$
2. Because $4-4=0$, all that remains on the left side is $2 x$.
$2 \mathrm{x}=8-4$
3. Because $8-4=4$, all that remains on the right side is 4 .
$2 \mathrm{x}=4$
4. Because 2 is multiplying x, the inverse operation is division. So divide both sides by 2 .
$\frac{2 \mathrm{x}}{2}=\frac{4}{2}$
5. Because $\frac{2}{2}=1$ you can conclude that $1 x=2$
6. It's convention to write just x rather than 1 x , so write $\mathrm{x}=2$.
7. To check, replace x with 2 , and show that the left side equal 8 .

Therefore we can conclude that $x=2$ is the correct value of x.
$2(2)+4=4+4=8$
Solve $3 x-2=7$

Solve $2 x+4=8$

1. We can also solve this equation by first dividing by 2 .

We can do this because 2 is a common factor of 2,4 and 8 . Below, you see 2 written as 2 times 1,4 as 2 times 2 and 8 as 2 times 4 .

$$
2 \cdot 1 x+2 \cdot 2=2 \cdot 4
$$

2. Divide both sides of the equation by 2 , and cross off matching 2 's.

$$
\frac{2 \cdot 1 \cdot \mathrm{x}}{2}+\frac{2 \cdot 2}{2}=\frac{2 \cdot 4}{2} \quad \frac{2 \cdot 1 \cdot \mathrm{x}}{2 ?}+\frac{2 \cdot 2}{2}=\frac{2 \cdot 4}{2}
$$

3. At this point, you have the equivalent equation $1 x+2=4$
4. Now simply subtract 2 from both sides, getting $1 x+2-2=4-2$
5. This turns into $1 \mathrm{x}=2$
6. Finally, it's convention to write $1 x$ as just x, so $x=2$ is the solution, as before.

Solve $3 x+6=9$ using the method outlined above.

Solve $2 \mathrm{x}+4 \mathrm{x}=12$

1. First add the two terms on the left side, getting
$6 \mathrm{x}=12$
2. Once you have the two terms added, divide both sides by 6 .
$\frac{6 \mathrm{x}}{6}=\frac{12}{6}$
3. Because $\frac{6}{6}=1$ in front of x you have 1 , so at this point we have $1 \mathrm{x}=2$
4. Lastly, because it's convention to write x rather than 1 x , you c an write $\mathrm{x}=2$
5. To confirm this value of x is the correct one, replace x with 2 in the original equation, and show the left and right sides are equal.

$$
2 \cdot 2+4 \cdot 2=4+8=12
$$

So we can be confident that $x=2$ is the correct solution.
Solve $3 x+2 x=10$ using the method outlined above.

Solve $2 x+5 x+8 x=15$

1. First, as in the example above, add the terms on the left side.
$15 \mathrm{x}=15$
2. Now divide both sides by 15 , remembering that $\frac{15}{15}=1$ $\frac{15 \mathrm{x}}{15}=\frac{15}{15}$
3. So at this opint we have $1 \mathrm{x}=1$. Becuase it's convention to write x instead of 1 x , we then have $\mathrm{x}=1$ as the solution.
4. To confirm, replace x with 1 in the original equation and show that the left and right sides are equal.
$2(1)+5(1)+8(1)=2+5+8=7+8=15$
This confirms that 1 is the correct value of x.
Solve $6 x+4 x+4 x=20$ using the method outlined above.

Solve $2 x+3 x+5=20$

1. Gather like terms on the left first.

$$
5 x+5=20
$$

2. Subtract 5 from both sides.

$$
5 x+5-5=20-5
$$

3. Simplify the steps above. Becuase $5-5=0$, all that remains on the left is $5 x$, and the right side 20-5=15

$$
5 x=15
$$

4. Because 5 is multiplying x, divide both sides by 5 . Division is the inverse operation. Remember that

$$
\frac{5 x}{5}=\frac{15}{5} \quad 1 x=3
$$

$$
\frac{5}{5}=1
$$

5. It's convention to write $1 x$ as x, so just write $x=3$ as the solution.
6. To check, replace x with 3 and show the left and right sides are equal. Always use the original equation to check.

$$
2(3)+3(3)+5=6+9+5=15+5=20
$$

So we can feel confident that $x=3$ really does solve the equation.
Solve $3 x+4 x+6=20$ using the method outlined above.

Solve $2(x+4)=10$

1. Because 2 is multiplying $x+4$, divide both sides by 2 .

$$
\frac{2(x+4)}{2}=\frac{10}{2}
$$

2. Cancel the 2 's on the left side and write 5 for $\frac{10}{2}$

$$
\frac{2(x+4)}{2}=5
$$

3. At this point, you have $x+4=5$ left. Subtract 4 from both sides.
$x+4-4=5-4$
4. Because $4-4=0$, on the left you have only x left, and the right is $5-4=1$. So we can feel confident that $\mathrm{x}=1$ is the solution.
5. To check, replace x with with 1 , and show that the left and right sides are equal.

Always use the original equation to check. This shows that $\mathrm{x}=1$ is the correct solution. $2(1+4)=2(5)=10$

Solve $3(x-2)=9$ using the procedure outlined above.

Solve $2(x+4)=10$ by using the distributive property.

1. Distribute the 2 on the left into the parenthesis.
$2 \cdot x+2 \cdot 4=10$
2. Simplify the left side by performing the multiplications.
$2 x+8=10$
3. Subtract 8 from from both sides.
$2 \mathrm{x}+8-8=10-8$
4. Becuase $8-8=0$, only $2 x$ is left on the left.

On the right, you have $10-8$, which is 2 .
$2 \mathrm{x}=2$
5. Because 2 is multiplying x, divide both sides by 2 .
$\frac{2 \mathrm{x}}{2}=\frac{2}{2} \quad$ Remeber that $\quad \frac{2}{2}=1$
$1 \mathrm{x}=1$
6. Since it's convention to write x instead of $1 x$, write $x=1$ as the solution.

Solve $3(x-2)=9$ using the method outlined above.

Solve $3-2(x+5)=8$

1. Distribute -2 intot he parenthesis.

$$
3-2 \cdot x-2 \cdot 5=8
$$

2. Simplify the left side by doing the multiplications.

$$
3-2 x-10=8
$$

3. Simplify the left side further by gatheing like terms.

$$
\begin{aligned}
& 3-10-2 x=8 \\
& -7-2 x=8
\end{aligned}
$$

4. Add 7 to both sides and simplify.

$$
\begin{aligned}
& -7+7-2 x=8+7 \\
& -2 x=15
\end{aligned}
$$

5. Becuase -2 is multiplying x, divide both sides by -2 .
$\frac{-2 \mathrm{x}}{-2}=\frac{15}{-2}$

$$
x=-7.5
$$

$$
\text { Remember that } \quad \frac{-2}{-2}=1
$$

Solve $4-3(x-2)=7$ using the method outlined above.

Solve $2(x-4)+3(x-5)=10$

1. Distribute 2 into $x-4$ and distribute 3 into $x-5$
$2 \mathrm{x}-2 \cdot 4+3 \mathrm{x}-3 \cdot 5=10$
2. Perform the multiplications.
$2 x-8+3 x-15=10$
3. Gather like terms on the left side.
$2 \mathrm{x}+3 \mathrm{x}-8-15=10$
$5 x-23=10$
4. Add 23 to both sides to reverse the operation of subtraction.
$5 x-23+23=10+23$
$5 \mathrm{x}=33$
5. Divide both sides by 5 to reverse the operation of multiplication by 5 .

$$
\begin{aligned}
& \frac{5 x}{5}=\frac{33}{5} \quad \text { Remember that } \frac{5}{5}=1 \\
& x=\frac{33}{5}
\end{aligned}
$$

Solve $3(x-2)+2(x-4)=15$ by following the method outlined above.

Solve $x-1=-x$

1. Rewirte the equation as $1 x-1=-1 x$. This way you can clearly see that the coefficient on x on the right side is -1 .
2. Add $1 x$ to both sides of the equation. This will put all the x 's on the left.
$1 \mathrm{x}-1+1 \mathrm{x}=-1 \mathrm{x}+1 \mathrm{x}$
3. $1 x$ and $1 x$ is $2 x$, so now we have the equation shown below.
$2 \mathrm{x}-1=0$
remeber that $-1 x+1 x=0$
4. Add 1 to both sides.
$2 \mathrm{x}-1+1=1$
5. Because $-1+1=0$ on the left, all that remains is $2 x$ on the left.
$2 \mathrm{x}=1$
6. Becuase 2 is multiplying x, divide both sides by 2 .

$$
\begin{aligned}
\frac{2 \mathrm{x}}{2} & =\frac{1}{2} \\
\mathrm{x} & =\frac{1}{2}
\end{aligned}
$$

7. To check, replace x with $\frac{1}{2}$ in the original equation, and show that the left side is equal to the right side.
$\frac{1}{2}-1=\frac{1}{2}-\frac{2}{2}=\frac{-1}{2}$
$-1 \cdot \frac{1}{2}=\frac{-1}{2}$
this is the right side
Solve $-x+1=x$ using the steps outlined above.

Solve $2 \mathrm{x}-1=\mathrm{x}$

1. Rewrite to show the coefficent of 1 on the x on the right.

$$
2 x-1=1 x
$$

2. Subtract 1 x from both sides.

$$
2 \mathrm{x}-1 \mathrm{x}-1=1 \mathrm{x}-1 \mathrm{x}
$$

3. Simplify the step above. Remembrer that $1 x-1 x=0$

$$
1 \mathrm{x}-1=0
$$

4. Add 1 to both sides to reverse subtraction.
$1 \mathrm{x}-1+1=1$
5. Because $-1+1=0$, on the left we have only $1 x$ $1 \mathrm{x}=1$
6. Because it's convention to write x instead of $1 x$, write $x=1$.
7. To check, replace x with 1 on the left and right sides, and show they're equal in value.

2(1) $-1=1$
$2-1=1$
$1=1$
Solve $3 x-2=4 x$ using the method outlined above

Solve $x-1=2 x+4$

1. Subtract $2 x$ from both sides in order to get all the variable terms on the left.
$x-1-2 x=2 x-2 x+4$
2. $2 x-2 x=0$, so on the right we have only 4 left.
$x-1-2 x=4$
3. On the left, write x as $1 x$ and subtract $2 x$ from it.
$1 \mathrm{x}-2 \mathrm{x}-1=4$
4. $1 x-2 x=-1 x$, so now we have the equation below.

$$
-1 x-1=4
$$

5. Now add 1 to both sides. This gives a 5 on the right.

$$
-1 x=5
$$

6. Now divide both sides by -1 .
$\frac{-1}{-1} \mathrm{x}=\frac{5}{-1}$
7. Remember that $\frac{-1}{-1}=1$ so that we have $1 \mathrm{x}=-5$.
$1 x=-5$ is the same as $x=-5$
8. To check, replace x with -5 in both sides of the equation, and show that the left side is equal to the right side.
$-5-1=-6 \quad$ so the left side is -6
$2(-5)+4=-10+4=-6 \quad$ so the right side is also -6

Solve 2(x-4)=3(x-5)

1. Distribute 2 into $x-4$ and distribute 3 into $x-5$
$2 x-2.4=3 x-3.5$
2. Now do the multiplications.
$2 \mathrm{x}-8=3 \mathrm{x}-15$
3. Subtract 3 x from both sides
$2 \mathrm{x}-3 \mathrm{x}-8=3 \mathrm{x}-3 \mathrm{x}-15$
4. $3 x-3 x$ on the right side is 0 , so only -15 is left on the right.
$2 \mathrm{x}-3 \mathrm{x}-8=-15$
5. On the left, we have $2 x-3 x=-1 x$
$-1 \mathrm{x}-8=-15$
6. Now add 8 to both sides.

$$
-1 x=-7
$$

7. Divide both sides by -1 .

$$
\frac{-1}{-1} x=\frac{-7}{-1}
$$

8. Lastly, we have $x=7$.

Solve $x+(x+1)+(x+2)=10$

1. Drop the parenthesis on the left.
$x+x+1+x+2=10$
2. Combine the x 's on the left, and add the 1 and 2 .
$3 \mathrm{x}+3=10$
3. Subtract 3 from both sides.
$3 \mathrm{x}+3-3=10-3$
4. Becasue $3-3=0$, we have the equation below. $3 \mathrm{x}=7$
5. Now we divide both sides by 3 .
$\mathrm{x}=\frac{7}{3}$
Solve $2 x+(2 x+1)+(2 x+2)=6$ using the method shown above.

To access the additional 8 HD videos, please follow the link below.
You can use the word THISISMAGNIFICENT as the password.
http://www.tomsmath.com/algebra-solving-linear-equations.html

