For the case of $x^{3}+y^{2}=x y$, we can imagine the solution to this equation as the curve where the surfa meet.

We can create a fumetion that says $\mathbb{F}(x, y)=x^{3}+y^{2}-x y=0$ 。
This just creattes a new surface ænd we ære interested in seeing where this suufface has the value $z=0$.

Along the curve $x^{3}+y^{2}-x y=0$, we get y as a fumction of \mathbb{X}. By the chain rulle, we get
$\mathbb{F}(\mathrm{x}, \mathrm{y})=0$
$\mathbb{F}(\mathbb{x}, f(x))=0$ since $y=f(x)$
$\frac{\partial \mathbb{F}}{\partial \mathbb{X}} \frac{d \mathbb{X}}{d \mathbb{X} \mathbb{X}}+\frac{\partial \mathbb{F}}{\partial \mathbb{y}} \frac{d y}{d \mathbb{X}}=0$
$\frac{\partial \mathbb{x}}{\partial \mathbb{X}}=\mathbb{1}$
$\frac{\partial \mathbb{F}^{\prime}}{\partial \mathbb{X}} \cdot \mathbb{1}+\frac{\partial \mathbb{I F}}{\partial \mathbb{Z}} \frac{d y}{d \mathbb{d} \mathbb{X}}=0$
Now solve for $\frac{d y}{d x}$:
$\frac{\partial \mathbb{F} \cdot}{\partial \mathbb{y}} \frac{d y}{d \mathbb{X}}=-\frac{\partial \mathbb{F}}{\partial \mathbb{X}}$
$\frac{d d y}{d x}=\frac{-\mathbb{F}_{x}}{\mathbb{F}_{y}}$

So we get the following:
$\mathbb{F}(x, y)=x^{3}+y^{2}-2 x y=0$
$\mathbb{F}_{x}=3 x^{2}-2 y$
$\mathbb{F}_{y}^{*}=2 y-2 \pi$
Thus, $\frac{d y}{d \mathbb{I}}=\frac{-\mathbb{F}_{x}^{\prime}}{\mathbb{F}_{y}^{\prime}}=\frac{-\left(3 x^{2}-2 y\right)}{2 y-2 y}$

\mathbb{X}

This is in agreement with the primeiples of implicitt derivatives learned in Calcullus I.
The concepits illustreated above ære based on the details of the impllicit function theorem.
This stattes that if \mathbb{F} is defined on a disk contrining point (a,b), where $\mathbb{F}(a, b)=0, \mathbb{F}_{y}(a, b) \neq 0$ and \mathbb{F}_{x} and \mathbb{F}_{y} aree continnous on the diskk, then the equation $\mathbb{F}(x, y)=0$ defines y as a function of x nexu the point (\mathfrak{x}, b) and the derivaitive is $\frac{d y}{d x}=\frac{-F_{x}}{F_{y}}$.

$y \cos (x)=x^{2}+y^{2}$
$\mathbb{F}(\mathbb{X}, \mathbb{y})=\mathbb{y} \cos (\mathbb{x})-\mathbb{x}^{2}-y^{2}=0$
$\frac{d y}{d x}=\frac{-\mathbb{F}_{x}}{\mathbb{F}_{y}}=\frac{-[-y \sin (x)-2 x]}{\cos (x)-2 y}=\frac{y \sin (x)+2 x}{\cos (x)-2 y}$

