
Implicit Differentiation:  
For the case of 3x  2y  xy we can imagine the solution to this equation as the curve where the surfaces

meet.

3x  2y

x y

We can create a function that says  
F x y  3x  2y  xy  0.  
This just creates a new surface and we are  
interested in seeing where this surface  
has the value z=0.

F x y  0

Along the curve 3x  2y  xy  0 we get y as a function  
of x. By the chain rule, we get  
F x y  0  
F x f x  0 since y=f(x)
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F(x,y)= 3x  2y 2xy  0  

Fx  3 2x 2y  

Fy  2y 2x  

Thus,
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F x y  3x  2y  xy

This is in agreement with the principles of implicit  
derivatives learned in Calculus I.  

The concepts illustrated above are based on the details of the  
implicit function theorem.  
This states that if F is defined on a disk containing point (a,b),  
where F(a,b)=0, Fy (a,b)  0 and Fx and Fy  are continous on the disk, then  
the equation F(x,y)=0 defines y as a function of x near the point (a,b) and  

the derivative is
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y c o s x  2x  2y

F x y  y co s x  2x  2y  0
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