Symunetry makes siketching grophs go faster.
Here is a property that has been found to be usefuil:
$f(-x)=\mathbb{A}(\mathbb{x})$
exponent 1 review
$\begin{array}{ll}(\mathfrak{M})^{p}=\mathbb{X}^{p} b^{p} & \mathbb{B}^{2}=\mathbb{Z} \cdot \mathbb{Z}=9 \\ (2 x)^{3}=\mathfrak{2}^{3} x^{3}=8 x^{3} & \mathbb{B}^{2} \neq 3 \cdot 2\end{array}$
y coordinate when $=\mathbb{x}$ goes in is the swme as the y coordinate when $+\mathbb{x}$ goes into the fumction.
$f(x)=x^{2}$
$\mathbb{A}(\mathbb{1})=\mathbb{1}, \mathcal{A}(-\mathbb{1})=(-\mathbb{1})^{2}=\mathbb{1} \Leftarrow$ bouth cuitpuits mre the swme, buit the inpurts wre negaited.
$\mathfrak{f}(2)=4, \mathcal{f}(-2)=(-2)^{2}=4 \Leftarrow$ both cuitpuits ære the saume, but the impurts ære megated.
$f(x)=x^{2}$ (this gives a point of the form (x, x^{2}), (inupuit, outpuit)
$\mathbb{f}(-\mathbb{x})=(-\mathbb{x})^{2}=(-\mathbb{1} \cdot \mathbb{x})^{2}=(-\mathbb{1})^{2}\left(x^{2}\right)=(-\mathbb{1})(-\mathbb{1}) x^{2}=\mathbb{1} x^{2}=\mathbb{x}^{2}\left(-\mathbb{X}, \mathbb{X}^{2}\right)$ (inpputt, ouitpuit)
When a function lhas the property or characteristic that $f(-x)=f(x)$, we call the fumetion ann even fumetion. This kind of function is said to lhave y-axis symunethy.

\mathbb{x}	\mathbb{y}	(\mathbb{x}, y)
$-\mathbb{2}$	4	$(-\mathbb{2}, 4)$
$-\mathbb{1}$	$\mathbb{1}$	$(-\mathbb{1}, \mathbb{1})$
0	0	$(\mathbb{0}, \mathbb{0})$
$\mathbb{1}$	$\mathbb{1}^{2}=\mathbb{1}$	$(\mathbb{1}, \mathbb{1})$
$\mathbb{2}$	$\mathbb{2}^{2}=4$	$(2,4)$

Since $f(x)=x^{2}$ is evem , once we calcullate $f(\mathbb{1})=\mathbb{1}$, we know that $f(-\mathbb{1})=\mathbb{1}$ allso.

Holf on the right is the swne as the hadf on the left.

Another Kind of Symmetry:

$f(x)=x^{3}$
$\mathbb{f}(\mathbb{1})=\mathbb{1}^{3}=\mathbb{1} \quad$ point $(\mathbb{1}, \mathbb{1})$
$\mathfrak{f}(-\mathbb{1})=(-\mathbb{1})^{\mathfrak{3}}=(-\mathbb{1})(-\mathbb{1})(-\mathbb{1})=\mathbb{1}(-\mathbb{1})=-\mathbb{1}$ poinit $\left.(-\mathbb{1},-\mathbb{1})\right)$ $f(2)=2^{3}=8$ gives the poinit $(2,8)$
$f(-2)=(-2)^{3}=-8$ gives the point $\left.(-2,-8)\right\}$
the outtput is the in absolute value buit the sigms wre differeent.

So for $f(x)=x^{3}$, megating the impuit allso megaites the output.
More generally, $f(x)=x^{3}$ gives the point $\left(\mathbb{E}_{4} x^{3}\right)$) signs of inpurts differee
$f(-x)=-x^{3}$ so the point is $\left.\left(-x,-x^{3}\right)\right\}$ and signs of outtpuits
$f(3)=27, f(-3)=-27$
$\mathbb{f}(\mathbb{x}=\mathbb{0})=\mathbb{C}$

A function having the property that $f(-x)=-\mathbb{f}(x)$ (cure exæumple:
is called æn

$$
f(-x)=-x^{3}=-f(x)
$$

odd fumetion.
Itt's said to lhave origin-symmettry. In terms of points, this meæns that if a point (x, y) is on the groplh, so is the point $\left(-\mathbb{X}_{9},-y\right)$.

Both expoments ære even.
$\mathfrak{f}(\mathbb{1})=\mathbb{1}^{2}+\mathbb{1}^{4}=\mathbb{1}+\mathbb{1}=\mathbb{2}$
$\mathbb{f}(-\mathbb{1})=(-\mathbb{1})^{2}+(-\mathbb{1})^{4}=\mathbb{1}+\mathbb{1}=\mathbb{2}$
$\mathbb{f}(-\mathbb{x})=(-x)^{2}+(-x)^{4}=\mathbb{x}^{2}+x^{4}=\mathbb{A}(x) \quad \Rightarrow \mathbb{f}(-x)=\mathbb{A}(x)$
$(-x)^{2}=(-x)(-x)=x^{2}$
We caun sey that
$(-x)^{4}=(-x)(-x)(-x)(-x)=x^{4}$
the frumetion
$f(x)=x^{2}+x^{4}$ is

even. In other wordis, itt has y-axis symumethy.
$\left.\mathfrak{f}(\mathbb{x})=\mathbb{1}-\mathbb{x}^{4} \quad \mathbb{f}(-\mathbb{x})=\sqrt{\square}-\mathbb{x}\right)^{4}=\mathbb{1} \square x^{4}=\mathbb{A}(\mathbb{x})$
Evenn oir odid :

$$
(-\mathbb{x})^{4}=\mathbb{x}^{4}
$$

再 $(\mathbb{x})=2 \mathbb{x}^{11}-\mathbb{x}^{2}$

1. wihat are the expoments? ?, ${ }^{1}$

1 is ann odd number, 2 is an even number.
So we have a mixture of different types of numibers in the exponemts.
Is this even? no because both exponents are not even.

$$
\mathbb{f}(-\mathbb{x})=\mathbb{f}(\mathbb{x})
$$

The growplh and the check with $-\mathbb{x}$ indicate that $f(x)=\mathbb{1}-x^{4}$ is ann even fumetion.

We see the y-coordinaites ære the same, but the x values ఖre megatives off exch other.

When a fumetion has terms witth even expoments, the fuunction is even b / c even exponents get Hid of megatives. $f(x)=x^{6}+x^{8}+x^{10},(6,8,10$ each is ann even mumber.)
$f(-x)=x^{6}+x^{8}+x^{10} \Leftarrow$ Same expreession produced lby $\mathbb{f}(-x)$ because each even exponent gets rids of negatives)

