Symmetry makes sketching graphs go faster. Here is a property that has been found to be useful: f(-x) = f(x)

exponent review

 $(ab)^{p} = a^{p}b^{p}$ $(2x)^{3} = 2^{3}x^{3} = 8x^{3}$ $3^{2} \neq 3 \cdot 2$

y coordinate when -x goes in is the same as the y coordinate when +x goes into the function. $f(x) = x^2$

f(1) = 1, $f(-1) = (-1)^2 = 1 \Leftrightarrow$ both outputs are the same, but the inputs are negated. f(2) = 4, $f(-2) = (-2)^2 = 4 \Leftrightarrow$ both outputs are the same, but the inputs are negated. $f(x) = x^2$ (this gives a point of the form (x, x^2) , (input, output) $f(-x) = (-x)^2 = (-1)^2 (x^2) = (-1)(-1)x^2 = 1x^2 = x^2$ (-x, x²) (input, output) When a function has the property or characteristic that f(-x) = f(x), we call the function

an even function. This kind of function is said to have y-axis symmetry.

-2

-1

X	J	(x,y)	$f(x) = x^{2}$
-2 -1	4	(-2,4) (-1)	4
0	0		3
1 2	1 ² = 1 2 ² = 4	(1,1) (2,4)	2
Since $f(x) = x^2$ is even			1
, once	e we calc		

we know that f(-1)=1 also.

$$f(x) = x^2, f(-x) = x^2$$

Half on the right is the same as the half on the left.

Another Kind of Symmetry: $f(x) = x^3$ $f(1) = 1^3 = 1$ point (1, 1) $f(-1) = (-1)^3 = (-1)(-1)(-1) = 1(-1) = -1$ point (-1,-1) $f(2) = 2^3 = 8$ gives the point (2, 8) $f(-2) = (-2)^3 = -8$ gives the point (-2, -8)

Both exponents are even. $f(1) = 1^2 + 1^4 = 1 + 1 = 2$ $f(-1) = (-1)^2 + (-1)^4 = 1 + 1 = 2$ $f(-x) = (-x)^2 + (-x)^4 = x^2 + x^4 = f(x) \Rightarrow f(-x)^2 = (-x)(-x) = x^2$ $(-x)^2 = (-x)(-x)(-x) = x^2$ $(-x)^4 = (-x)(-x)(-x)(-x) = x^4$ We can the function $f(x) = x^4$ $f(x) = x^6$ $f(x) = x^6 + f(-x) = x^6$

 $\Rightarrow f(-x) = f(x)$ We can say that the function $f(x) = x^2 + x^4$ is even. In other words, it has y-axis symmetry.

We see the y-coordinates are the same, but the x values are negatives of each other.

When a function has terms with even exponents, the function is even b/c even exponents get rid of negatives. $f(x) = x^6 + x^8 + x^{10}$, (6, 8, 10 each is an even number.) $f(-x) = x^6 + x^8 + x^{10} \Leftrightarrow$ Same expression produced by f(-x) because each even exponent gets rids of negatives)

$$f(x) = 1 - x^4$$

Even or odd?

f(-x) = f(x)

 $f(-x) = (1 - x)^4 = 1 - x^4 = f(x)$

 $(-x)^4 = x^4$

The graph and the check with -x indicate that $f(x) = 1 - x^4$ is an even function.

 $h(x) = 2x^1 - x^2$

1. what are the exponents? 2,1

1 is an odd number, 2 is an even number. So we have a mixture of different types of numbers in the exponents. Is this even? no because both exponents are not even.

Def. not symmetric about the y axis because the red segment is of different length compared to the horizontal blue segment. Does it have origin symmetry? There is no origin symmetry. For example, $f(1)=2(1)-1^2 = 2-1=1$ so the point is (1,1) $f(-1)=2(-1)-(-1)^2 = -2-(1) = -3$ point is (-1, -3)Notice, that when the input is negated, the output is not just -1, 1 -3, so this function is not odd. In other words, it doesn't have origin symmetry. This function has no symmetry.