

Imagine our goall is to find the sllope allong the blue lime shown,allong the surfface. If we lett point \mathbb{Q} move towardls \mathbb{P}, ænd divide the red segmenit parallell to the xy plane into the red segment parallell to the zaxis, we will get a sllope value.
We can writte it as $\frac{\Delta z}{J /}$. Observe that the slice acrass the surface is just a curve, so we cann modell it with a one variable function, caull it g(h)). Ih repreesents how far you've gone along the green unitt vector shown in the picturee. Using paraunetric equations, we can ælso represent the segunent in the xy pllane as
 The sloppe att \mathbb{P}, where lh $=0$, can be written then as
 lime $\mathbb{P Q}$ move so it becomes the taungent line att \mathbb{P}.
 the raite of change of f, in the dirrection of the unit vector un, is given by the exprression above.
 $\frac{\Delta z}{\ln \sqrt{\mathbb{R}^{2}+b^{2}}}$, which is not the correect sllope.
By the chainn ruule, we can also write

The vectorr $\left\langle\mathbb{f}_{x}, f_{y}\right\rangle$ is called the groadient. It contains the p wrtialls. Simce $\|\langle\cos \theta$, sim $\theta\rangle \|=1$, the direection dlerivative is just the scallar projection of the gradient onito the wnitt vector $\langle\cos \theta$, sim $\theta\rangle$. In other word $\cos \theta$ takes a fraction of f_{x} and adids that fraction of f_{x} to the firaction that $s i m \theta$ takes of f_{y}

Notice that $2(\mathbb{1}) \cdot \cos (45)=2 \cdot \frac{\mathbb{1}}{\sqrt{2}}=2 \cdot 0.7=70 \%$ of $\mathbb{f}_{x_{x}}$

$$
2(\mathbb{1}) \sin (45)=2 \cdot \frac{\mathbb{1}}{\sqrt{2}}=2 \cdot 0.7=70 \% \text { off } f_{y}
$$

Exxumple: Find the slope on $x^{2}+y^{2}$ in the dilirection of $\langle\mathbb{1}, \mathbb{1}\rangle$ at the point $(\mathbb{1}, 11)$.

$$
\begin{aligned}
& \mathbb{D}_{w} \mathbb{f}(\mathbb{X}, \mathbb{y})=\langle\boldsymbol{2} \mathbb{Z}, \underline{2} \mathbb{y}\rangle \cdot \frac{\langle\mathbb{1}, \mathbb{1}\rangle}{\sqrt{\mathbb{1}^{2}+\mathbb{1}^{2}}} \\
& =\langle\underline{2} \mathbb{Z}, \underline{2} \mathbb{y}\rangle \cdot \frac{\mathbb{1}}{\sqrt{2}}\langle\mathbb{1}, \mathbb{1},\rangle \\
& =\frac{2 \pi}{\sqrt{2}}+\frac{2 y}{\sqrt{2}} \\
& =\frac{2}{\sqrt{2}}(x+y) \\
& \mathbb{D}_{u} \mathbb{f}(\mathbb{1}, \mathbb{1})=\frac{2}{\sqrt{2}}(\mathbb{1}+\mathbb{1})=\frac{4}{\sqrt{2}} \approx 2.8
\end{aligned}
$$

Find the dirrectionall derivative of $\mathcal{A}(x, y)=x^{3}+3 x y+y^{2}$ at the point $(1,2)$, towwrds (3,4).

$\nabla \mathbb{f}(\mathbb{1}, 2)=\left\langle 3 \cdot \mathbb{1}^{2}+3 \cdot 2,3 \cdot \mathbb{1}+2 \cdot 2\right\rangle=\langle 9,7\rangle$ [This is the gradient vector att the point (1,2)] unit vectorl from (1,2) to (3,4): $\frac{\langle\mathfrak{3}-\mathbb{1}, 4-2\rangle}{\sqrt{(3-1)^{2}+(4-2)^{2}}}=\frac{\langle 2,2\rangle}{\sqrt{2^{2}+2^{2}}}=\frac{\mathbb{1}}{\sqrt{4+4}}\langle 2,2\rangle \stackrel{2}{\underline{E}} \frac{\mathbb{1}}{2 \sqrt{2}}\langle 2,2\rangle=\frac{\mathbb{1}}{\sqrt{2}}\left\langle\frac{2}{2}, \frac{2}{2}\right\rangle$ Directional Derivautive: $\mathbb{D}_{u} \mathbb{H}(\mathbb{1}, \mathfrak{2})=\nabla \mathbb{A}(\mathbb{1}, \mathscr{2}) \cdot \frac{\mathbb{1}}{\sqrt{2}}\langle\mathbb{1}, \mathbb{1}\rangle=\frac{\mathbb{1}}{\sqrt{2}}\langle 9,7\rangle \bullet\langle\mathbb{1}, \mathbb{1}\rangle \quad=\frac{\mathbb{1}}{\sqrt{2}}\langle\mathbb{1}, \mathbb{1}\rangle$

$$
\begin{aligned}
& =\frac{\mathbb{1}}{\sqrt{2}}[9 \cdot \mathbb{1}+7 \cdot \mathbb{1}] \\
& =\frac{\mathbb{1}}{\sqrt{2}}(9+7) \\
& =\frac{\mathbb{1}}{\sqrt{2}}(\mathbb{1} 6) \\
& \approx \mathbb{1} 1.3
\end{aligned}
$$

To maximizze the vilue of the directionall derivative, we can write

Forir the sake of illlustration, set $\| \nabla \mathbb{H}=\mathbb{1}$, so we get $\nabla \mathbb{f} \bullet$ w $=\cos (\theta)$. Thus, we get

the maximuum value of $\mathbb{D}_{w} f(x, y)$ occurs when the ængle between the unitt vector and $\nabla \mathbb{f}$ is $\theta=\mathbb{D}$.

We can allso tell that the minimumn value of $\mathcal{D}_{w} \mathbb{f}(x, y)$ occurs when $\theta=\pi$.

Fori $\mathcal{f}(x, y)=e^{x-y}$, find the direction of maximum increase at the point ($(1,1)$) wnd the diurection of maximumn decrease.

$$
\begin{aligned}
\nabla \mathbb{A}(\mathbb{x}, \mathbb{y})=\left\langle\frac{\partial}{\partial \mathbb{x}} e^{\mathbb{x}-\mathbb{y}}, \frac{\partial}{\partial \mathbb{y}} e^{\mathbb{x}-\mathbb{y}}\right\rangle & =\left\langle e^{\mathbb{x}-y} \frac{\partial}{\partial \mathbb{x}}\left(\mathbb{x}^{-}-\mathbb{y}\right), e^{\mathbb{x}-\mathbb{y}} \frac{\partial}{\partial \mathbb{y}}\left(\mathbb{x}^{-y}\right)\right\rangle \\
& =\left\langle e^{x-y}(\mathbb{1}), e^{x-y}(-\mathbb{1})\right\rangle \\
& =\left\langle e^{x-y},-e^{x-y}\right\rangle
\end{aligned}
$$

$$
\nabla \mathbb{A}(\mathbb{1}, \mathbb{1})=\left\langle e^{\mathbb{1}-\mathbb{1}},-e^{\mathbb{1}-\mathbb{1}}\right\rangle=\left\langle e^{0},-e^{0}\right\rangle=\langle\mathbb{1},-\mathbb{1}\rangle
$$

$\langle 1,-1\rangle$ is the dirrection of maximum increease. $-\langle 1,-1\rangle=\langle-1,1\rangle$ is the dirrection of maximumn decrease. The rate of maximumn increases is the magnitudle of the gradidienit vector: $\|\nabla(\mathbb{H}, \mathbb{1})\|=\sqrt{\mathbb{1}^{2}+(-\mathbb{1})^{2}}=\sqrt{\mathbb{1}+\mathbb{1}}=\sqrt{2}$
$\nabla(\mathbb{1}, \mathbb{1})=\langle\mathbb{1},-\mathbb{1}\rangle$ Notice it shows the direction of maximumn increase mud is perpendicullar to the levell curve.

Since the green segunent is bigger in lenth then the black segment in the plane, and Δz is the same for both triangles shown, we get that \qquad $\frac{\Delta z}{\text { length of black seymenit }}$ The black segment is longer because itt's slanted when it goes firom levell curve to levell curve.

Notice that Δz is the swune for both, since the levell curves go from it to? $\stackrel{\text { froir both. }}{ }$
You see the green segment is shortter, so
$\frac{\Delta z}{\text { greeen length }}>\frac{\Delta z}{\text { black length }}$
Notice that if we lhave a levell curve from $F(x, y)=1 / k$, the equation of the tangent line can be written as $\mathbb{r}^{\circ}(t)=\left\langle\mathbb{x}^{0}(t), \mathbb{y}^{\prime}(t)\right\rangle$. Att the point of tangency, we must have $\mathbb{F}(\mathbb{x}(t), \mathbb{y}(t))=\mathbb{k}$ thrue, so lby the chain rulle, we gett $\frac{\partial \pi}{\partial x} \frac{d / x}{d / t}+\frac{\partial F}{\partial y} \frac{d y}{d / t}=0$, which in vector formn cann be written as $\left\langle\frac{\partial \mathbb{F}}{\partial \mathbb{X}}, \frac{\partial \mathbb{F}}{\partial \mathbb{y}}\right\rangle \cdot\left\langle\frac{d \mathbb{X}}{d \mathbb{I} t}, \frac{d y}{d \mathbb{I} t}\right\rangle=0$
$\nabla \mathbb{F} \bullet \mathbb{H}^{\circ}(t)=0$
But this says that the gradient vector and the ro(t)/ level curves are perpendiculaur.

The surface ittself cann allso be imagined as a levell suuface of a function of three variables. $\mathbb{F}(\mathbb{x}, \mathbb{y}, z)=\mathbb{K}$ Along the paith, $\mathbb{x}=\mathbb{x}(t), y=y(t), z=\mathbb{z}(t)$, so we get $F(x(t), y(t), z(t))=\mathbb{k}$ Notice that we cann differentiate this ussinaghthe chain ruile to gett $\frac{\partial F}{\partial x} \frac{d x}{d t t}+\frac{\partial F}{\partial y} \frac{d y}{d i t}+\frac{\partial I F}{\partial z} \frac{d Z}{d I t}=0$

Notice that this can be wriitten as a dlot product:
$\left\langle\frac{\partial \mathbb{F}}{\partial \mathbb{X}}, \frac{\partial \mathbb{F}}{\partial \mathbb{y}}, \frac{\partial \mathbb{F}}{\partial \mathbb{Z}}\right\rangle \cdot\left\langle\frac{d \mathbb{Z}}{d \mathbb{d} t}, \frac{d y}{d \| t}, \frac{d \mathbb{Z}}{d \mathbb{H}}\right\rangle=0$
But this says the gradient vector is perpendicullar to ir.
 $\mathbb{P}\left(\mathbb{x}_{0}, y_{0}, z_{0}\right)$ æud some other point ($\left.x_{9}, y, z_{z}\right)$. Thus we get, using $\nabla \mathbb{F}\left(x_{0}, y_{0}, z_{0}\right)$) the direction vector, $\nabla \mathbb{F}\left(x_{0}, y_{0}, z_{0}\right) \bullet\left\langle x^{-} x_{0}, y-y_{0}, z^{-} z_{0}\right\rangle=0$

$\mathbb{F}_{\mathbb{k}}\left(\mathbb{X}_{0}, \mathbb{F}_{0}, \mathbb{z}_{0}\right)\left(\mathbb{x}-\mathbb{z}_{0}\right)+\mathbb{F}_{y}\left(\mathbb{x}_{0}, \mathbb{F}_{0}, z_{0}\right)\left(\mathbb{y}-\mathbb{y}_{0}\right)+\mathbb{F}_{z}\left(\mathbb{x}_{0}, \mathbb{y}_{0}, z_{0}\right)\left(\mathbb{z}-z_{0}\right)=0$
Exaumple: Find the tangent plane to $\mathbb{x}^{2}+y^{2}+z^{2}=3$ at the point ($\mathbb{1}, 1,1$). First note that $\mathbb{1}^{2}+\mathbb{1}^{2}+\mathbb{1}^{2}=\mathbb{1}+\mathbb{1}+\mathbb{1}=3$ checks with the rightit side.
Formm $\mathbb{F}(x, y, y)=x^{2}+y^{2}+z^{2}-3$
Formm the dlerivatives:

Note that as in the case of level curves, itts true also that the groadient vector gives the direection of fastest increase for a fumetion $\mathbb{F}(x, y, y)$.

Suppose the temperaituree in space is given by $T(\mathbb{I}, y, z)=\frac{\mathbb{1}}{x^{2}+y^{2}+z^{2}}$. Tis in degrees Celcius and position is in meiters. Att the point ($1,1,1$), in which direction does the temperatture increase the fastest and what is the raite of increase?

$$
\begin{aligned}
\nabla \mathbb{F}(\mathbb{X}, \mathbb{y}, \mathbb{Z}) & =\left\langle\frac{\partial}{\partial \mathbb{x}}\left(\mathbb{x}^{2}+y^{2}+z^{2}\right)^{-\mathbb{1}}, \frac{\partial}{\partial \mathbb{y}}\left(\mathbb{x}^{2}+\mathbb{y}^{2}+\mathbb{z}^{2}\right)^{-\mathbb{1}}, \frac{\partial}{\partial \mathbb{Z}}\left(\mathbb{x}^{2}+\mathbb{y}^{2}+\mathbb{z}^{2}\right)^{-\mathbb{1}}\right\rangle \\
= & \left\langle\frac{-\mathbb{1}}{\left(\mathbb{x}^{2}+\mathbb{y}^{2}+\mathbb{z}^{2}\right)^{2}} \frac{\partial}{\partial \mathbb{x}}\left(\mathbb{x}^{2}+\mathbb{y}^{2}+\mathbb{z}^{2}\right), \frac{-\mathbb{1}}{\left(\mathbb{x}^{2}+\mathbb{y}^{2}+z^{2}\right)^{2}} \frac{\partial}{\partial \mathbb{y}}\left(\mathbb{x}^{2}+\mathbb{y}^{2}+\mathbb{z}^{2}\right), \frac{-\mathbb{1}}{\left(\mathbb{x}^{2}+\mathbb{y}^{2}+z^{2}\right)^{2}} \frac{\partial}{\partial \mathbb{Z}}\left(\mathbb{x}^{2}+\mathbb{y}^{2}+\mathbb{z}^{2}\right)\right\rangle \\
& =\frac{-\mathbb{1}}{\left(\mathbb{x}^{2}+\mathbb{y}^{2}+z^{2}\right)}\langle\mathbb{Z} \mathbb{X}, \mathbb{Z} \mathbb{y}, \mathbb{Z} \mathbb{z}\rangle
\end{aligned}
$$

$\nabla \mathbb{F}(\mathbb{1}, \mathbb{1}, \mathbb{1})=\frac{-\mathbb{1}}{\mathbb{1}^{2}+\mathbb{1}^{2}+\mathbb{1}^{2}}\langle\boldsymbol{2} \cdot \mathbb{1}, \underline{2} \cdot \mathbb{1}, \underline{2} \cdot \mathbb{1}\rangle=\frac{-\mathbb{1}}{\mathbb{Z}}\langle\mathbb{2}, \underline{2}, \underline{2}\rangle=\left\langle\frac{-2}{\mathbb{2}}, \frac{-2}{\mathbb{2}}, \frac{-2}{\mathbb{2}}\right\rangle$ divection of max. increase

Rate of Max. Increase:

$\|\nabla \mathbb{F}(\mathbb{1}, 1,1)\|=\sqrt{\left(\frac{-2}{3}\right)^{2}+\left(\frac{-2}{3}\right)^{2}+\left(\frac{-2}{3}\right)^{2}}=\sqrt{3 \cdot \frac{4}{9}}=\sqrt{\frac{4}{3}}=\frac{2}{\sqrt{3}} \approx 1.15^{\circ} \mathbb{C} / \mathrm{mn}$ (1.15 degrees Celcius per meter)

Forr the blue numbers above, we gett $\mathbb{D}_{u u} T \approx \frac{70-60}{8}=\frac{10}{8}=1.25^{\circ} \mathrm{C} / \mathrm{mmi}$ - 10 milles

Shorter segment seems to be about 8 miles.
Estimate the value of $\mathbb{D}_{u 1} \mathbb{f}(2,1)$ using the picture bellow. 2.

1

To answer, project $\nabla \mathbb{A}(2,1)$ onto the unit vector. Add numbers allong the axes to get a better sense of
 1, buit the angle between un and $\nabla \mathbb{A}(2,1)$ is moire thann 90 , so the scalar projection is æbout $\left.-\mathbb{1} \approx \mathbb{D}_{u k} \mathbb{(2} 2,1\right)$

3 Where does the minimumn vilue of \mathbb{D}_{u} foccure This is so because $\nabla \mathbb{f} \bullet u=\|\nabla \mathbb{f}\| \cos (\theta)$, $\|$ w $\|=\mathbb{1}$
Witth $\|\nabla \mathrm{f}\|=1$, we get $\cos (\theta)$, which is minimized att $\theta=\pi$ 。
If you set $\| \nabla$ f $=$, the location of the minimumn doesnit change.
Thus we get ∇ fow $=\|\nabla\| \cos (\pi)=-\| \nabla$ f This says the
diurection of fastest dlecrease is $-\nabla \mathbb{f}_{0}$
Exæumple: $\mathcal{A}(x, y)=x^{2}-y^{2}$ gives us
$\nabla \mathbb{A}(\mathbb{x}, \mathbb{y})=\langle 2 \mathbb{2},-2 \mathbb{2}\rangle$ Att $(\mathbb{1}, \mathbb{1})$, we gett $\nabla \mathbb{H}(\mathbb{1}, \mathbb{1})=\langle 2 \cdot \mathbb{1},-2 \cdot \mathbb{1}\rangle=\langle 2,-2\rangle$ Direction of fastest decrease $=-\nabla(\mathbb{1}, \mathbb{1})=-\langle\mathfrak{2},-\mathfrak{2}\rangle=\langle-\mathfrak{2}, \mathfrak{2}\rangle$

Imagine on the conitoure map the levell curves reepresent temperatturee and the diustance scale is that a

- represenits about 10 milles.
Estimatte \mathbb{D}_{w} T according to the picturee.
$\mathbb{D}_{u t} \mathbb{T} \approx \frac{70-60}{\text { disistance }}=\frac{10}{10 / 2.5}$

$$
=\frac{10}{4}=2.55^{\circ} / 1 \mathrm{mii}
$$

=-2.5 segments from the space between the level curves.
so $10 / 2.5=4$ miles

Suppose youlre climbing a hill whose shape is gien by $z=1000-0.004 x^{2}-0.05 y^{2}$, where x and y and ære in meters and you're standing at the opinit ($60,40,906$). If you walk south, will you ascend ore descend? Find the raite. $1000-0.004(60)^{2}-0.05(40)^{2} \approx 906$ metters Wailking south tells us the direction is - jso we have to find $D_{-j} z(60,40)=\nabla z(60,40) \cdot\langle 0,-1\rangle$ $\nabla \mathbb{z}(\mathbb{x}, \mathbb{y})=\langle-0.008 \mathbb{Z},-\mathbb{0} .10 y\rangle \Rightarrow \nabla \mathbb{Z}(60,40)=\langle-\mathbb{0} .008(60),-\mathbb{0} .10(40)\rangle=\langle-\mathbb{0} .480,-4\rangle$
$\mathbb{S O}$ we gett $\mathbb{D}_{\text {south }} \mathbb{z}(60,40)=\langle-\mathbb{0} .480,-4\rangle \cdot\langle 0,-\mathbb{1}\rangle=-\mathbb{0} .480(\mathbb{0})-4(-\mathbb{1})=4$ This says youl will ascend at a ratte of 4 vertical metters for every horizontal meter.
If you wallk northwest, thatt's allong the vector $\langle\mathbb{1}, 1\rangle$, which in unit form is $\frac{1}{\sqrt{2}}\langle\mathbb{1}, 1$,$\rangle . So we get$ $\mathbb{D}_{\text {morthwest }} z(60,40)=\langle-0.480,-4\rangle \cdot \frac{\mathbb{1}}{\sqrt{2}}\langle\mathbb{1}, \mathbb{1}\rangle=\frac{\mathbb{1}}{\sqrt{2}}[-0.480-4]=\frac{\mathbb{1}}{\sqrt{2}}(-4.480) \approx-3.168$ This sæys when you walk northwest, you descend by 3.168 meters per horizontall meter.

Proofs of a couple rulles concering gradients: u, V functions and a,b constants 5 .

$$
\begin{aligned}
& \nabla(a w+b w)=\left\langle\frac{\partial}{\partial x}(x w+b w), \frac{\partial}{\partial w}(x w+b w)\right\rangle \quad \text { You shoulld thy }
\end{aligned}
$$

$$
\begin{aligned}
& =\mathfrak{Z}\left\langle\mathbb{w}_{x}, \mathbb{w}_{y}\right\rangle+\mathbb{b}\left\langle\mathbb{w}_{x}, w_{y}\right\rangle \\
& =\pi \nabla \mathbb{Z}+\mathbb{Z} \nabla \mathbb{W}
\end{aligned}
$$

Find the equattions of the normail line ænd tangent plane to $x y^{2} z^{3}=8$ att the poinit（ $2,2,21$ ）．
$\mathbb{F}(\mathbb{X}, y, z)=\mathbb{z} y^{2} z^{3}$ ．Then $x y^{2} z^{3}=8$ is a level surfface of \mathbb{F} ænd $\nabla \mathbb{F}(\mathbb{X}, y, z)=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle$
$\operatorname{So} \nabla \mathbb{F}(2,2, \mathbb{1})$ is a normall vector for the plane tangent to the graplh att（ $2,2,1$ ），Thus，æu equation of the pllane is $\left\langle\underline{2}^{2} \cdot \mathbb{1}^{3}, 2 \cdot 2 \cdot 2 \cdot \mathbb{1}^{3}, 3 \cdot 2 \cdot 2^{2} \cdot \mathbb{1}^{2}\right\rangle \cdot\left\langle\mathbb{x}^{-2}, \mathbb{y}^{-2}, \mathbb{Z}-\mathbb{1}\right\rangle=0$

$$
\begin{aligned}
& \langle 4,8,24\rangle \cdot\left\langle\mathbb{x}^{-2}, y^{-2}, z^{-}-\mathbb{1}\right\rangle=0 \\
& 4(\mathbb{x}-2)+8(\mathbb{y}-2)+24(z-\mathbb{1})=0 \\
& \text { divivide 4 खwæy: }(\mathbb{x}-2)+2(\mathbb{y}-2)+6(z-\mathbb{1})=0 \\
& \mathbb{x}^{-2}+2 \mathbb{2} y-4+6 z-6=0 \\
& x+2 y+6 z=2+4+6 \\
& \mathbb{x}+2 y+6 z=\mathbb{1} \mathbb{Z} \\
& \text { normail } \\
& \text { line: } \\
& \pi(t)=\pi_{0}^{0}+4 W \\
& \text { scale } \nabla \mathbb{F}(2,2, \mathbb{1}) \text { 西y } \\
& 4:\left\langle\frac{4}{4}, \frac{8}{4}, \frac{24}{4}\right\rangle \\
& =\langle\boldsymbol{2}, 2, \mathbb{1}\rangle+\mathbb{4}\langle\mathbb{1}, 2,6\rangle \\
& =\langle\boldsymbol{2}+4,2+24, \mathbb{1}+64\rangle \\
& x(t)=2+t \\
& \boldsymbol{y}(t)=2+2 t \\
& z(\mathbb{t})=\mathbb{1}+6 \pi
\end{aligned}
$$

7．If $\mathcal{f}(\mathbb{x}, \mathbb{y})=2 x y$ ，find the gradient vector $\nabla \mathbb{A}(\mathbb{1}, 3)$ ænd use oit to find the tæungent lime to the level curve $f(x, y)=6$ att the $p o i n t(1,3)$ ．
$\nabla \mathbb{A}(\mathbb{x}, \mathbb{y})=\left\langle\mathfrak{2} \mathbb{y} \frac{\partial}{\partial \mathbb{x}} \mathbb{x}, 2 \mathbb{2} \frac{\partial}{\partial \mathbb{y}} \mathbb{y}\right\rangle=\langle\mathfrak{2} \mathbb{y}, 2 \mathbb{Z}\rangle \quad 2 x y=6 \Rightarrow x y=3 \Rightarrow \mathbb{Z}=\frac{\mathfrak{B}}{\mathbb{Z}}$
The groalient vector is perpendicullar to the tangent lime，so we the
$\nabla \mathbb{(}(\mathbb{1}, \mathfrak{B})=\langle\mathfrak{2} \cdot \mathfrak{B}, \mathfrak{2} \cdot \mathbb{1}\rangle=\langle 6, \mathfrak{2}\rangle$
$\nabla \mathbb{A}(\mathbb{1}, \mathfrak{B}) \cdot\langle\mathbb{X}-\mathbb{1}, \mathbb{Z}-\mathbb{Z}\rangle=\mathbb{0}$
$\left\langle(\mathbb{G}, \mathbb{2}\rangle \bullet\left\langle\mathbb{x}-\mathbb{1}, \mathbb{y}^{-} \mathbb{B}\right\rangle=\mathbb{O}\right.$
$6(\mathbb{X}-\mathbb{1})+2(\mathbb{y}-\mathbb{3})=0$
divide 2 2way： $3(\mathbb{X}-\mathbb{1})+(\mathbb{y}-3)=0$

$$
\begin{aligned}
& 3 \mathbb{x}^{-3}+\mathbb{y}-3=0 \\
& \mathbb{B}^{x+}+\mathbb{y}=3+3 \\
& 3 \mathbb{x}+y=6 \Rightarrow y=6-3 \mathbb{X}
\end{aligned}
$$

Firom groadient we get thatt $2 / 6=1 / 3$ is the sloppe of the red ærrow． So the negative reciprocall is $\frac{-3}{1}$ or the divection
vector $\langle 1,-3\rangle$ Using this we get the equation of the
line as $\mathbb{H}(\mathbb{t})=\langle\mathbb{1}, 3\rangle+4\langle\mathbb{1},-3\rangle=\langle\mathbb{1}+\mathbb{4}, \mathfrak{B}-\mathbb{3} 4\rangle$
Notice thatt att $\mathbb{H}=0,1 \pi^{\circ}(t) \cdot \nabla \mathbb{A}(\mathbb{B})=\langle\mathbb{1},-\mathfrak{Z}\rangle \bullet\langle 6,2\rangle$

Notice that in generoll，we gett $\pi^{\circ}(t) \bullet \nabla \mathbb{f}(\mathbb{x}, y)=\langle\mathbb{1},-3\rangle \bullet\langle 2 y, 2 \mathbb{x}\rangle$

$$
=6-6=0 \text { so they really }
$$

$$
=2 \mathbb{Z}-6 \mathbb{x}
$$ æue perpendicullar．

but allong levell curves，we have $2 x y=$ a
Thus we get $2\left(\frac{\pi}{2 \mathbb{x}}\right)-6 \mathbb{x} \quad y=\frac{\pi}{2 \mathbb{x}}$

$$
\frac{\pi}{x}-6 \mathbb{x}
$$

With $\mathfrak{m}=6$ as above
we get $\frac{6}{x}-6 x$, which is 0 a $\mathbb{x}=\mathbb{1}$ and $\mathbb{x}==\mathbb{1}$ ，so ait $\mathbb{x}=-\mathbb{1}$ ， wed also havve a perpp．gradient vectore ．

The pllane $y+z=3$ initersects the cylindlerr $x^{2}+y^{2}=5$ inn æu ellipse. Find the parametric equations for the twngnet line to this ellipse at the point ($\mathbb{1}, 2,1$) æud do a growph.
$y+z=3$ is a levell surface of the function $\mathbb{H}(\mathbb{z}, \bar{y}, \mathbb{Z})=y+\mathbb{Z}$
$x^{2}+y^{2}=5$ is a level surfiace of $g(x, y, z)=x^{2}+y^{2}$
$\nabla \mathbb{A}(\mathbb{X}, \mathbb{y}, \mathbb{Z})=\langle\mathbb{O}, \mathbb{1}, \mathbb{1}\rangle$
$\nabla g(\mathbb{Z}, \mathbb{y}, \mathbb{Z})=\langle\boldsymbol{Z} \mathbb{Z}, \boldsymbol{2} \mathbb{y}, \mathbb{0}\rangle$
Tangent lime would be perpendicullar to the gradient vectors aut ($1,2,1$)
$w=\nabla \mathbb{H}(\mathbb{1}, 2, \mathbb{1}) \times \nabla g(\mathbb{1}, 2, \mathbb{1})=\left|\begin{array}{ccc}i & j & \mathbb{1} \\ 0 & \mathbb{1} & \mathbb{1} \\ 0 & 4 & 0\end{array}\right|=\langle\mathbb{0}-4,-(\mathbb{0}-2), \mathbb{0}-2\rangle=\langle-4,2,-2\rangle$

