Locall Maximuum, Locall Minimuum:

 diusk centered att (a,b). (These ære pealks.)
$\mathfrak{f}(a, b)$ is a locall minimum value of f if $f(a, b) \leq \mathbb{A}(x, y)$ for all domminn points (x, y) in an open dilisk centered at (a,b). (These wre valleys.)
When the twngent planes exist at such points, they ære hoirzontall

First Derivatives Test for Locall Max/Min: If $f(x, y)$ is a locall max oir min att an interion point (a,b) of the dommin of f, and if the first partiall derivautives exist, then

If finas a llocall cextremumm att (a,b), then the function $\frac{H}{}(y)=\mathbb{A}(x, y)$, (x is fixed at a, $s 0 y$ varies)

The function $g(\mathbb{x})=\mathbb{f}(\mathbb{x}$, 估 $)$ Thas $g^{\circ}(\mathfrak{m})=\mathbb{O}$, so

$$
\mathbb{f}_{x}(\mathbb{B}, \vec{b})=\mathbb{C} .
$$

 $\mathbb{Z}=\mathbb{A}\left(a_{0}, b_{b}\right)+\mathbb{O}\left(\mathbb{x}-\mathbb{X}_{0}\right)+\mathbb{O}\left(y-y_{0}\right)$
$z=\mathbb{A}(2,6)$ (So the tangent plane is horivonital (sllopes ære zero, so the pllane is not tilted)
Criticall points ære points where $f_{x}=\mathbb{O}, f_{y}=\mathbb{O}$, or where one ore both of the dlerivatives do not exist. Just liike a function of one variable can have an inflection point, a function of two variables can Thave a saddlle poinit. In the graplh below, every initervall gives values off albove and bellow the x axis.

A differentiouble function $f(x, y)$) has a sadddle point at a critical point (a,b)) if in every open disk centered at (a,b) three ære dommin poinit (a,y) where $\mathcal{A}(x, y)>\mathbb{A}(x, b)$ and dlomain points where $\mathfrak{f}(\mathbb{x}, \mathbb{y})<\mathbb{f}(x, b)$. The corresponding point (a,b, $\mathbb{f}(a, b))$ on the surfice $z=f(x, y)$ is called a sadille point of the surface.

Thus, in the graph below, we see that as we move towærds (0,0), every divisk has poinits such that $\mathfrak{f}>0$ and $\mathfrak{f}<\mathbb{0}$.

Idlentififying a sadddle poinit:

$$
\begin{aligned}
& f(x, y)=x^{2}-y^{2} \\
& f_{x}=2 \mathbb{2}, f_{y}=-2 y
\end{aligned}
$$

Notice allong $\mathbb{X}=\mathbb{O}: \mathbb{A}(\mathbb{O}, \mathbb{y})=-y^{2}<\mathbb{O}(\mathbb{y} \neq \mathbb{0})$
Notice ellong $\mathbb{y}=0: \mathbb{A}(\mathbb{x}, \mathbb{O})=\mathbb{x}^{2}>\mathbb{O},(\mathbb{x} \neq \mathbb{0})$
Result is that every open disk centered on the origin produces both positive and negautive values, so f has no locall extreme vallue. Notice in this case the tangent plane at (0,0) is both above and bellow the

Find the locall extreme values of $f(x, y)=x^{2}+y^{2}$

$\begin{aligned} & f_{x}=2 \pi x \\ & 2 \pi=0 \end{aligned}$	
	$\begin{aligned} & y_{y y}=2 y \\ & 2 y=0 \end{aligned}$
$\mathbb{X}=0$	$\boldsymbol{y}=0$

So the only criticall poinit is (0,0), where f is $\mathbb{f}(\mathbb{O}, \mathbb{O})=\mathbb{0}^{2}+\mathbb{0}^{2}=\mathbb{0}$. Notice that $\mathbb{x}^{2}+y^{2} \geq \mathbb{0}$, s© $\mathbb{Z}=\mathbb{0}$ gives a locall minimuum.

The expreession $f_{x a x} f_{y y}-f_{x y}^{2}$ is called the diliscriminant ou Hessian off. It is easier to remember by writting it in determminant formm:

$$
\begin{aligned}
\left|\begin{array}{ll}
\mathbb{f}_{\text {xax }} & f_{x y y} \\
\tilde{f}_{x y y} & f_{y y y}
\end{array}\right| & =f_{x a x} f_{y y y}-\mathbb{f}_{x y y} f_{x y y} \quad\left(\mathfrak{f}_{x y y}=f_{y y x}\right) \\
& =f_{x a x} f_{y y y}-f_{x y y}^{2}
\end{aligned}
$$

Second Derivattive Test for Extheme Values:
(Proof can be dome using Tayloris Formulla)
((Look in section 14010, 11 th \mathbb{E} dl of Calculus by Thomms)
Suppose that $f(x, y)$) mind itts firirst and second partioul derivautives ære continuous thorrughout a diusk centered ait (a, b) mud thatt $f_{x}(2, b)=f_{y}(x, b)=0$. Then i. f Thas a llocall maxiumum att (a,b) if fax <0 खund $f_{x x a x} f_{y y y}-f_{x y}^{2}>0$ att ($\left.a, b\right)$.
ㅇilfi thas a llocall minimnum att (a,b) iff $f_{x x}<0$ and
$\mathbb{f}_{x x} f_{y y y}=\mathbb{f}_{x y y}^{2}>0$ att ($\left.a, b\right)$.
iiiil fithas a saddille point ait (a,b) irf frox fyy $-f_{x y y}^{2}<0$ at (a,b)
iv. the test is inconclusive att (a,b) iff $f_{x a x} f_{y y}-f_{x y}^{2}=0$ att(a,, b$)$. Mrust use some other means to determine the behavior of fitt (a,b).

More intuitive initerpreetaitions of the stattements albove: If the diuscrimminmit is positive att the point (a,b), then the surfiace curves the sæme wæy in all dirrections. That is, iff frax <0, and the discrimniant is positive, theree is alocal max. If $f_{x x}>\mathbb{O}$, mnd the discriminat is positive, there is a locall minn. This is shown bellow forr $\mathbb{x}^{2}+y^{2}$ where $\mathbb{H}_{\text {zax }}=\boldsymbol{2}>0$ 。

Callcullate the ingredients for the 2nd partials test:

$$
\text { Now find } y: \quad \Rightarrow \mathbb{x}^{-}-4 \mathbb{x}^{-}-4-2=0
$$

$\mathbb{H}_{\text {rax }}=\frac{\partial}{\partial \mathbb{X}} \mathbb{f}_{\mathbb{X}}=\frac{\partial}{\partial \mathbb{X}}(\mathbb{y}-\underline{2} \mathbb{X}-\boldsymbol{2})=-\boldsymbol{2}$

$$
\mathbb{x}=-2:-2-2(y)-2=0
$$

$$
-4-2 y=0
$$

$$
\Rightarrow-3 \mathbb{x}-6=0
$$

$$
\mathbb{y}=\underline{2} \mathbb{x}+\boldsymbol{2}
$$

$f_{y y}=\frac{\partial}{\partial y} f_{y}=\frac{\partial}{\partial y}(\mathbb{x}-\boldsymbol{2} y-\boldsymbol{2})=-\boldsymbol{2}$

$$
\Rightarrow-3 \mathbb{X}=6
$$

$$
-2 \boldsymbol{2}=4
$$

$\mathbb{f}_{y X X}=\frac{\partial}{\partial \mathbb{X}} \mathbb{E}_{y}=\frac{\partial}{\partial \mathbb{X}}(\mathbb{X}-\boldsymbol{2} \mathbb{Z}-\boldsymbol{2})=\mathbb{1}$

$$
y=-2
$$

$$
\Rightarrow \mathbb{X}=-\mathbb{Q}
$$

Plug into the second partials formullas:
i. f has a local maximum ait (a,b) if $f_{x x x}^{y}<0$
and $f_{x x x} f_{y y}-f_{x y}^{2}>0$ at (a, b).
iilef has a local minimum at (a,b) iff $\mathrm{f}_{\mathrm{xx}}<0$ and $\mathrm{f}_{x x} \mathrm{f}_{y y}-\mathrm{f}_{x y}^{2}>0$ att (a,b).
fiii. finas a sadddle point at (a,b) iff $f_{x x x} f_{y y}-f_{x y}^{2}<0$ ait (a,b) iv. the test is inconclusive at (2,b) iff $f_{x x x} f_{y y}-f_{x y}^{2}=0$ at $(2, b)$. $(-2,-2)=(-2)(-2)-(-2)^{2}-(-2)^{2}-2(-2)-2(-2)+4$ Must use some other means to determine the behavior of fat (a,b).

$$
=8
$$

Searching for Iocall Extreme Values:
Find the locall extreeme vallues of $\mathbb{f}(x, y)=2 x y$
Notice fis diffenernitiable everywhere, so it can assume extreme values onlly where
$\mathbb{f}_{\mathbb{X}}=\frac{\partial}{\partial \mathbb{X}}(2 \mathbb{Z} \mathbb{y})=2 \mathbb{2} \Rightarrow \boldsymbol{2} \mathbb{Z}=\mathbb{0} \Rightarrow \mathbb{y}=0$
$\mathbb{f}_{y}=\frac{\partial}{\partial \mathbb{y}}(\underline{2} \mathbb{X} \mathbb{y})=2 \mathbb{Z} \Rightarrow \boldsymbol{X} \mathbb{X}=\mathbb{O} \Rightarrow \mathbb{X}=\mathbb{0}$
So only the point is a candirdatte forr an extreme value.

So appllying the second partials test we get
$\mathbb{f}_{x a x} f_{x a x}-\mathbb{f}_{x y}^{2}=0 \cdot 0-(2)^{2}=-4<0$, so we hawe a saddille point ait (0,0).
The graph of freinforces the resultt above.
if. If has a local maximum att (a,b) if $f_{x x}^{\prime}<0$ and $f_{x x} f_{y y}-f_{x y}^{2}>0$ at (a, b). iilof has a local minimum at (a,b) iff $f_{x x x}<0$ and $\mathrm{f}_{x x} \mathrm{f}_{\mathrm{yv}}-\mathrm{f}_{\mathrm{yv}}^{2}>0$ ait (a, b).
Hiiil. f has a sadidle point at (a,b) if $f_{x x} f_{y y}-f_{x y}^{2}<0$ at (a,b)
iv, the test is inconclusive att (a,b) iff $\mathrm{f}_{x x} \mathrm{f}_{y y}-\mathrm{f}_{x y}^{2}=0$ at(a, b). Must use some other means to determine the behavior of f att (a,b).
Notice there is a single hump in the gropph.

Here, $\mathbb{f}_{\operatorname{tax}}=-2<0$
$D(-2,-2)=(-2)(-2)-(\mathbb{1})^{2}=4-11=3>0$
So we have the case of alocall naximumn att ($-2,-2$), where the value of the function is fat (a,b)

Absolutte Maxima and Minima on Closed, Boumdled Regions:

1. Hist the interion points of \mathbb{R} where fi may have
locall maxima or minima and evaluate
f out these poinits. These ære the criticall poinits of fo
2. List the boundlary points of \mathbb{R} where f Thas locall maxiuna and minima and evaluaite f at these poinits.
Look throught the lists above ænd pick out the max or min values.

$$
\begin{aligned}
& f_{x}=\frac{\partial}{\partial \mathbb{x}}\left[\mathbb{X} y-\mathbb{x}^{2}-y^{2}-2 \mathbb{X}-2 y+4\right]=y-2 \mathbb{X}-2 \\
& f_{y}=\frac{\partial}{\partial y}\left[x y-\mathbb{x}^{2}-y^{2}-2 \mathbb{Z}-2 y+4\right]=\mathbb{X}-2 y-2 \\
& \mathbb{E}_{\mathbb{x}}=\mathbb{O} \Rightarrow \mathbb{y}-\boldsymbol{2} \mathbb{Z}-\underline{2}=\mathbb{0} \Rightarrow \mathbb{y}=\underline{2} \mathbb{X}+\boldsymbol{2}
\end{aligned}
$$

Finding absolutte exthrema
Maximize $\mathcal{f}(x, y)=2+2 x+2 y-x^{2}=y^{2}$ overr the triongle given by $(0,0),(0,0)$ and $(0,9)$
glloball max appears lhere

Interiorl points:
$\nabla \mathbb{f}(\mathbb{X}, \mathbb{y})=\langle\mathbb{O}, \mathbb{O}\rangle$

$f_{\mathbb{X}}=\frac{\partial}{\partial \mathbb{x}}\left(2+2 \mathbb{X}+2 \mathbb{Z}-\mathbb{x}^{2}-\mathbb{y}^{2}\right)=2-2 \mathbb{Z} \Rightarrow 2-2 \mathbb{Z}=\mathbb{0} \Rightarrow-2 \mathbb{X}=-2 \Rightarrow \mathbb{X}=\mathbb{1}$
 Alt $(\mathbb{1}, \mathbb{1})$, we gett $(\mathbb{1}, \mathbb{1})=2+2 \cdot \mathbb{1}+2 \cdot \mathbb{1}-\mathbb{1}^{2}-\mathbb{1}^{2}=2+2+2-\mathbb{1}-\mathbb{1}=4$ Boundary Considlerations:
allomg $\mathbb{y}=\mathbb{0}$, we gett $f(\mathbb{x}, 0)=2+2 \mathbb{C}+2 \cdot 0-\mathbb{x}^{2}-0^{2}=2+2 \mathbb{x}-\mathbb{x}^{2}, 0 \leq \mathbb{x} \leq 0$

Poinits/values

$$
\begin{aligned}
& \mathbb{f}(\mathbb{1}, 1)=4 \\
& \mathbb{f}(\mathbb{Q}, \mathbb{0})=-6 \mathbb{1} \\
& \mathfrak{A}(\mathbb{1}, 0)=\mathbb{B} \\
& \mathcal{A}(\mathbb{O}, \mathbb{O})=2 \\
& \mathbb{f}(4.5,40.5)=-20.5
\end{aligned}
$$

This is an inverted parabolla and we can tell the minimum is (tt $\mathbb{x}=9$, where we gett
$\mathfrak{f}(9,0)=2+2(9)-(9)^{2}=2+18-81=-61$
Also,notice that $\mathbb{f}^{\prime}(\mathbb{x}, \mathbb{0})=\mathbb{2}-\mathbb{2} \mathbb{X}=\mathbb{O} \Rightarrow-2 \mathbb{X}=-\mathbb{2} \Rightarrow \mathbb{X}=\mathbb{1}$
wheree $(\mathbb{1}, 0)=2+2(\mathbb{1})-\mathbb{1}^{2}=4-\mathbb{1}=3$

This is shown in the growph bellow.

Since there only the variable is differeent, butt the expression is the same as bove, we can also say that
$f(0,0)=2$
 $\mathcal{A}(\mathbb{O}, 9)=-6 \mathbb{1}$
These values ære æuready listed above where it says points/values.

Lastly, we have to look at the values of f allong line $y=9-x$

So there max value is 4 att (1,11) ænd the minimumn value is $=61$ att (0,9) ænd (9,0).

