Partial Derivatives:

Partial derivatives measure rates of change with respect to one variable,

while another variable(or other variables) are held constant.

notation:

 $D_x f = \frac{\partial f}{\partial x} = f_x \leftarrow$ each represents the partial of f with respect to x

 $D_y f = \frac{\partial I}{\partial w} = f_y \leftarrow \text{ each represents the partial of f with respect to y}$

Defintion: $f_x(x, y) = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}$ (this says hold y constant and take limit with respect to x)

Example: f(x, y) = xy

find $f_{x}(x, y)$ by the limit:

$$f_{x}(x,y) = \lim_{h \to 0} \frac{(x+h)y - xy}{h} = \lim_{h \to 0} \frac{xy + hy - xy}{h} = \lim_{h \to 0} \frac{hy}{y} = y \text{ That is, } f_{x}(x,y) = y$$

In this case, we can visualize $f_x(x, y) = y$ as saying that when we have an area f(x,y)=xy, when x increases by 1, the area increases by y.

$$f_{y}(x, y) = \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h} = \frac{x(y+h) - xy}{h} = \frac{xy + xh - xy}{h} = \frac{xh}{h} = x \text{ so } f_{y}(x, y) = x$$

This can be interpreted to mean that when y increases by 1, the area increases by x.

In general, when differentiating with respect to x, treat y like a constant.

Examples:

$$f(x,y) = x^2 + \frac{1}{5}yx \Rightarrow \frac{\partial(x^2 + 4yx)}{\partial x} = \frac{\partial x^2}{\partial x} + \frac{1}{5}y\frac{\partial x}{\partial x} = 2x + \frac{y}{5}$$

Just like f(x,y) is a function, $f_x(x,y)$ is just a function.

 $f_{x}(0.5,1)$ = tells you the rate of change of f, with

respect to x, at the point (0.5,1).

It's shown as a small tangent line.

 $f_{x}(t)=r_{0}$ +tv, where $v=\langle 1,0,1.2\rangle$ (since 1.2/1=1.2) $f_{x}(.5,1)=2\cdot\left(\frac{1}{2}\right)+\frac{1}{5}\cdot 1=1+\frac{1}{5}=1.2$ so we get $r(t)=\langle 0.5,1,0.35\rangle+t\langle 1,0,1.2\rangle=\langle 0.5+t,1,0.35+1.2t\rangle$

 $f(1/2,1) = (0.5)^2 + \frac{1}{5} \cdot \frac{1}{2} \cdot 1 = 0.35$

$$f_X = 2X + \frac{y}{5}$$

 $f_{x}(0.5,1)$ corresponds to finding the rate of change of f, with respect to x, at the point (.5,1).

$$f_x(.5,1) = 2 \cdot \left(\frac{1}{2}\right) + \frac{1}{5} \cdot 1 = 1 + \frac{1}{5} = 1.2$$

Using
$$f(x,y) = x^2 + 4yz$$
, we get $f_y(x,y) = \frac{\partial}{\partial y} \left(x^2 + \frac{1}{5} yx \right) = \frac{\partial}{\partial y} x^2 + \frac{1}{5} x \frac{\partial}{\partial y} y = 0 + \frac{1}{5} x (1) = \frac{1}{5} x$

For example, the rate of change of f, with respect to y, at the point (.5,1) is f_y (.5,1) = $\frac{1}{5} \left(\frac{1}{2} \right) = \frac{1}{10}$

o for x since x doesn't change

tangent line is
$$r(t) = \langle 0.5, 1, 0.35 \rangle + t \langle 0, 1, 1/10 \rangle$$

= $\langle 0.5, 1+1t, 0.35+1/10t \rangle$

More Examples of Partial Derivatives:

$$f(x, y) = x cos(y)$$

$$f_{x} = \frac{\partial}{\partial x} x \cos(y) = \cos(y) \frac{\partial}{\partial x} x = \cos(y) \cdot 1 = \cos(y)$$

$$f_{y} = \frac{\partial}{\partial y} \times \cos(y) = x \frac{\partial}{\partial y} \cos(y) = x [-\sin(y)] = -x \sin(y)$$

 $V(r, h) = \pi r^2 h$ (volume of cylinder)

$$V_r = \frac{\partial}{\partial r} (\pi r^2 h) = \pi h \frac{\partial}{\partial r} r^2 = \pi h (2r) = 2\pi r h$$

area of triangle: $A(b, h) = \frac{1}{2}bh$

$$A_{b} = \frac{\partial}{\partial b} \left(\frac{1}{2} b h \right) = \frac{1}{2} h \frac{\partial}{\partial b} b = \frac{1}{2} h$$

$$A_{h} = \frac{\partial}{\partial h} \left(\frac{1}{2} bh \right) = \frac{1}{2} b \frac{\partial}{\partial h} h = \frac{1}{2} b$$

$$h(x,y)=e^{xy+2x}$$

$$h_{x} = \frac{\partial}{\partial x} e^{xy+2x} = e^{xy+2x} \frac{\partial}{\partial x} [xy+2x]$$

$$= e^{xy+2x} \frac{\partial}{\partial x} xy + \frac{\partial}{\partial x} 2x$$

$$= e^{xy+2x} \left(y \frac{\partial}{\partial x} x + 2 \frac{\partial}{\partial x} x \right)$$

$$= e^{xy+2x} [y\cdot 1 + 2\cdot 1]$$

$$= e^{xy+2x} [y+2]$$

$$f(x, y) = x \sin(y) + x y^{2} + y \ln(x)$$

$$f_{x}(x, y) = \frac{\partial}{\partial x} \left[x \sin(y) + x y^{2} + y \ln(x) \right]$$

$$= \sin(y) \frac{\partial}{\partial x} x + y^{2} \frac{\partial}{\partial x} x + y \frac{\partial}{\partial x} \ln(x)$$

$$= \sin(y) \cdot 1 + y^{2} \cdot 1 + y \left(\frac{1}{x} \right)$$

$$= \sin(y) + y^{2} + \frac{y}{x}$$

$$f_{y}(x, y) = \frac{\partial}{\partial y} \left[x \sin(y) + x y^{2} + y \ln(x) \right]$$

$$= x \frac{\partial}{\partial y} \sin(y) + x \frac{\partial}{\partial y} y^{2} + \ln(x) \frac{\partial}{\partial y} y$$

= x cos(y) + 2xy + In(x)