Velocity and Accelleration:

The speed of the particle is $\left\|r^{\circ}(t)\right\|=\|w(t)\|$. It's the magniturde off the velocity vector.

$$
\left\|\mathbb{R}^{0}(\mathbb{t})\right\|=\sqrt{\left(\frac{d \mathbb{X}}{d \mathbb{d}}\right)^{2}+\left(\frac{d y}{d d t}\right)^{2}+\left(\frac{d Z}{d d t}\right)^{2}}
$$

$$
\text { acceleraxtion }=\frac{d}{d t} r^{0}(t)=\mathbb{r}^{\infty}(t)
$$

$$
=\left\langle f^{\infty}(t), g^{\infty}(t), \ln ^{m}(t)\right\rangle
$$

Example: The position of an object is given by $r(t)=\left\langle t^{2}, t^{3}\right\rangle$. Find the velocity, speed and accelleration when $t=\mathbb{1}$ and draw a picture.

 $\mathbb{H}(\mathbb{1})=\left\langle\mathbb{1}^{2}, \mathbb{1}^{3}\right\rangle=\langle\mathbb{1}, \mathbb{1}\rangle$

Find the velocity, accellerathon and speed of a particle with position vector $\mathbb{r}(t)=\left\langle t, \mathbb{e}^{*}, \mathbb{e}^{*}\right\rangle$

speed $=\left\|\mathbb{R}^{0}(t)\right\|=\sqrt{\mathbb{1}^{2}+\left(e^{t}\right)^{2}+\left[e^{t}(\mathbb{1}+t)\right]^{2}}=\sqrt{\mathbb{1}+e^{2 t}+\left[e^{2 t}(\mathbb{1}+t)^{2}\right]}$

speed $v s$. time

acceleration vs. thime

A moving particle starts at an initial position $1(\mathbb{0})=\langle\mathbb{2}, \mathbb{0}, \mathbb{0}\rangle$ with initiall velocity (0) $=\langle\mathbb{0},-\mathbb{1}, \mathbb{1}\rangle$ - Its acceleration is $a(t)=\langle 24,34,5\rangle$. Find itts vellocity and positionn at time t.
$\mathbb{V}(t)=\int 2(t) d t t=\int\langle 2 t, 34,5\rangle d t=\left\langle t^{2}, \frac{3}{2} t^{2}, 5 t\right\rangle+\mathbb{C}$
Since $(\mathbb{O})=\langle\mathbb{O},-\mathbb{1}, \mathbb{1}\rangle$, we gett $\left\langle\mathbb{0}^{2}, \frac{3}{2} \mathbb{O}^{2}, 5 \cdot \mathbb{O}\right\rangle+\mathbb{C}=\langle\mathbb{O},-\mathbb{1}, \mathbb{1}\rangle$

$$
\begin{aligned}
& \langle\mathbb{O}, \mathbb{O}, \mathbb{O}\rangle+\mathbb{C}=\langle\mathbb{O},-\mathbb{1}, \mathbb{1}\rangle \\
& \mathbb{C}=\langle\mathbb{O},-\mathbb{1}, \mathbb{1}\rangle-\langle\mathbb{O}, \mathbb{O}, \mathbb{O}\rangle \\
& \mathbb{C}=\langle\mathbb{O},-\mathbb{1}, \mathbb{1}\rangle
\end{aligned}
$$

So the complete vellocity function is $w(t)=\left\langle t^{2}, \frac{3}{2} t^{2}-1,5 t+1\right\rangle$

$$
\begin{aligned}
\mathbb{P}(t) & =\int \mathbb{W}(t) d t=\int\left\langle t^{2}, \frac{3}{2} t^{2}-\mathbb{1}, 5 t+\mathbb{1}\right\rangle d t+\mathbb{D} \\
& =\left\langle\frac{t^{3}}{3}, \frac{\mathbb{1}}{2} t^{3}-t, \frac{5}{2} t^{2}+t\right\rangle+\mathbb{D}
\end{aligned}
$$

Since $\mathbb{H}(\mathbb{O})=\langle\mathfrak{Q}, \mathbb{0}, \mathbb{0}\rangle$, we gett $\left\langle\frac{\mathbb{D}^{3}}{3}, \frac{\mathbb{1}}{2} \mathbb{0}^{3}-\mathbb{0}, \frac{5}{2} \mathbb{0}^{2}+\mathbb{0}\right\rangle+\mathbb{D}=\langle\mathbb{2}, \mathbb{0}, 0\rangle$

$$
\begin{aligned}
& \langle\mathbb{O}, \mathbb{O}, \mathbb{O}\rangle+\mathbb{D}=\langle\mathbb{Q}, \mathbb{O}, \mathbb{O}\rangle \\
& \mathbb{D}=\langle\mathbb{Q}, \mathbb{O}, \mathbb{O}\rangle-\langle\mathbb{O}, \mathbb{O}, \mathbb{O}\rangle \\
& \mathbb{D}=\langle\mathbb{Q}, \mathbb{O}, \mathbb{O}\rangle
\end{aligned}
$$

So the complete position function is $\mathbb{I}(t)=\left\langle\frac{t^{3}}{3}, \frac{1}{2} t^{3}-t, \frac{5}{2} t^{2}+t\right\rangle+\langle 2,0,0\rangle$

Newtonis Law of Motion:
$\mathbb{F}(t)=\mathbb{m} \cdot \mathfrak{z}(t), \mathbb{F}=$ force, $2=$ accelleration
In the case of circullu motion, $\mathbb{r}(t)=\langle\operatorname{mcos}(\omega t)$, asim $(\omega t)\rangle$ 。
period $=\frac{2 \pi}{\omega}$ (time to complette a cycle)

$$
\begin{aligned}
& =\frac{d l}{d t}\langle-2 \omega \sin (\omega t), \pi \omega \cos (\omega t)\rangle \\
& =\langle-\pi \omega \cos (\omega t) \omega,-\pi \omega \sin (\omega t) \omega\rangle \\
& =\left\langle-2 \omega^{2} \cos (\omega t),-2 \omega^{2} \sin (\omega t)\right\rangle \\
& =-\omega^{2}\langle\operatorname{accos}(\omega t), \min (\omega t)\rangle \\
& =-\omega^{2} H^{2}(t)
\end{aligned}
$$

Thus, the force is given by $\mathbb{F}(t)=\operatorname{man}\left[-\omega^{2} \mathbb{I}(t)\right]=-\operatorname{mon} \omega^{2}$ ir (t) So the foree is a vector that points inwwred (b/c of the megative) and is a scallur muiltiple of the position vector for each t.
Here, both the mass, mand the the anguilar speed, ω (oumega), have an impact. The deffintion of onmega is $\frac{d \theta}{d / t}=\omega$ (raite at which the mngle changes with respect to time)

Projectille Motion:
In the albsense of mir resistance, æn object moves only under the foree of gravity.
Acceleration mear the surface of the Eærth is given by $g=-9.81 m / s^{2}$. So the force acting onn an object mass mis given by $\mathbb{F}=-\mathrm{mg} \dot{\mathrm{g}}$, where $\mathrm{j}=\langle\mathfrak{0}, \underline{1}\rangle$ (\mathbb{F} acts downward, hence the $=$).

From the gropph, we see that the initizil velccity can be written 2s $\mathbb{w}_{0}=\left\langle\left\|w_{0}\right\| \cos (\theta),\left\|w_{0}\right\|_{\sin }(\theta)\right\rangle$
Since $a^{(t)}=-$ gi (negative g since itts downwand) , we can integraite to gett $w(t)=\int-g d t y=-g t^{\prime} j^{+}$wo
Initegrting v(t), we get
$\mathbb{I}^{2}(t)=\int \mathbb{V}(t) d t=\int-g t d t j+\int W_{0} d t=-\frac{g}{2} t^{2} j+w_{0} t+\mathbb{D}$
Remember form above that $\mathbb{w}_{0}=\left\langle\| \|_{0}\|\cos (\theta),\| w_{0} \| \sin (\theta)\right\rangle$, so we gett $\mathbb{H}(\mathbb{t})=\frac{-g_{0}}{2} t^{2} j+\left\langle\left\|w_{0}\right\| \cos (\theta),\left\|w_{0}\right\| \sin (\theta)\right\rangle \mathbb{t}+\mathbb{D}$

$$
\begin{aligned}
& \mathbb{H}(\mathbb{H})=\left\langle\mathbb{O}, \frac{-\operatorname{sig}^{2}}{2} \mathbb{t}^{2}\right\rangle+\left\langle\left\|w_{\mathbb{D}}\right\| \cos (\theta) \mathbb{H}\| \|_{\mathbb{D}} \| \sin (\theta) \mathbb{t}\right\rangle+\mathbb{D} \\
& \mathbb{P}(\mathbb{t})=\left\langle\left\|w_{0}\right\| \cos (\theta) \pi, \frac{-\theta_{0}}{2} \mathbb{t}^{2}+\left\|w_{0}\right\|_{\sin } \sin (\theta) t\right\rangle+\mathbb{D}
\end{aligned}
$$

If we assume that the object is launched from ($0, \mathbb{y}_{0}$), the $\mathbb{D}=\left\langle\mathbb{O}, \mathbb{H}_{0}\right\rangle$
From ri(t), we get the parametric equations of the motion of the object as
$\mathbb{x}(t)=\left\|w_{0}\right\| \cos (\theta) t, y(t)=\frac{-g_{0}}{2} t^{2}+\left\|w_{0}\right\|_{\sin }(\theta) t+y_{0}$
How far dloes the object go down fielld? That occurs when $y=0$ (striking the grownd)
$\operatorname{Son} y(t)=0$
$\frac{-g_{0}}{2} t^{2}+\left\|w_{0}\right\|_{\sin }(\theta) \pi=0$
$t\left[\frac{-g_{0}}{2} 4+\left\|w_{0}\right\| \operatorname{sintin}(\theta)\right]=0$

Thus we get $x\left(\frac{2\left\|w_{0}\right\| \sin (\theta)}{g}\right)=\left\|w_{0}\right\| \cos (\theta) \cdot \frac{2\left\|w_{0}\right\| \sin (\theta)}{g}=\frac{\left\|w_{0}\right\|^{2} \cdot 2 \cos (\theta) \sin (\theta)}{g}=\frac{\left\|w_{0}\right\|^{2} \sin (2 \theta)}{g}$
set $\left\|w_{0}\right\|^{2}=\mathbb{1}$ (this is so we cman focus on $\sin (2 \theta)$]
$g=9.81$
This is maxumizzed when $\theta=45^{\circ}$ 。

Thus, if a proctile is fired so it leaves the barrel at a speed of $200 \mathrm{~m} / \mathrm{s}$ (meters per second) and from Theight of 2 meters, at ann angle of 30 degrees, we get the equaitions
$x(t)=200 \cos (30) t, y(t)=\frac{-9.81}{2} t^{2}+200 \sin (30) t+2$

$$
\begin{array}{ll}
=200 \frac{\sqrt{3}}{2} t & =-409 t^{2}+200 \cdot \frac{1}{2} t+2 \\
=100 \sqrt{3} t & =-409 t^{2}+100 t+2
\end{array}
$$

Thus, the distwnce in meters is $x(20.428)=100 \sqrt{3} \cdot \frac{100+100.196}{9.8} \approx 3538.262$ meters

By the Quadratic Formuulla, we get
$t=\frac{-100 \pm \sqrt{100^{2}-4(-4.9) \cdot 2}}{2(-4.9)}$
$t=\frac{100 \mp 100.196}{9.8}$
$t=\frac{100+100.196}{9.8} \approx 20.428$
So it takes the projectile 20.428 seconds of time to hirt the groumd

The vellocity is $v(t)=\langle 100 \sqrt{3},-9.814+100\rangle$ (just differeentiate $\mathbf{r}(t)$) part by part)
The speed on impact is $\|$ w(20.428) $\|=\sqrt{(100 \sqrt{3})^{2}+(-0.81(20.428)+100)^{2}} \approx 192.26143 \mathrm{~mm} / \mathrm{s}$
Accelleration can be resolved into parallell and perpendicullar componetts.

Remember that we can get a unit tangenit vector by doing $T(t)=\frac{\pi^{\circ}(t)}{\left\|x^{\circ}(t)\right\|}$
From this, we get $\|$ re $(t) \| T(t)=r^{\circ}(t)$
$2=\frac{d}{d} \mathbb{d} \mathbb{H}^{\circ}(t)=\frac{d}{d H}\left\|\mathbb{R}^{\circ}(t)\right\| T(t)=\left\|\mathbb{R}^{\circ}(t)\right\| T(t)+\left\|\mathbb{R}^{\circ}(t)\right\| T^{0}(t)$
(curvaiture, not develloped here is given by $\kappa=\frac{\left\|T^{0}(t)\right\|}{\left\|m^{0}(t)\right\|} \Rightarrow\left\|T^{0}(t)\right\|=\left\|\mathbb{R}^{0}(t)\right\| \kappa$)
(the wimit mormail vectori is $\mathbb{N}(t)=\frac{\mathbb{T}^{0}(t)}{\left\|T^{0}(t)\right\|} \Rightarrow\left\|\mathbb{T}^{0}(t)\right\| \mathbb{N}(t)=\mathbb{T}^{0}(t)$)
Thus we get $x_{2}=\left\|\mathbb{R}^{\circ}(t)\right\| T(t)+\left\|\mathbb{R}^{\circ}(t)\right\|\left\|T^{0}(t)\right\| \mathbb{N}(t)$

$$
\mathfrak{M}=\left\|\mathbb{H}_{c^{0}}(\mathbb{t})\right\| \mathbb{N}(\mathbb{t})+\left\|\mathbb{R}^{0}(\mathbb{t})\right\|\left\|\mathbb{R}^{0}(\mathbb{t})\right\| \mathcal{N} \mathbb{N}(\mathbb{t})
$$

writing $\mathbb{W}=\left\|\mathbb{H}^{\circ}(\mathbb{t})\right\|$, we get $\mathfrak{m}=\mathbb{v}^{0} T(\mathbb{t})+\mathbb{W} \mathbb{W} \kappa \mathbb{N}(\mathbb{t})$

$$
\mathscr{m}=w^{\prime} \mathbb{I}(t)+w^{w} \kappa \mathbb{N}(\mathbb{t})
$$

So we get the normeal component of accelleration as $w^{2} \kappa$ खnd we get the tangential component of accelleration as w.

$$
\mathfrak{a}_{m}=\kappa \mathbb{v}^{2}, \mathfrak{M}_{t}=\mathfrak{w}^{0}
$$

 Natice that
(speed \cdot dirirection $=v I$)
a= $w^{\prime} T(t)+w^{2} \kappa \mathbb{N}(t)$ from albove

$$
=w w^{0}
$$

 here)
A particle moves witth posittion given by $\mathbb{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ Find the normall and tangmentioul componen of acceleration:
 wollfirun alpha code
$\left[d / d t<t, t^{\wedge} 2 t^{\wedge} 3>. d / d t d / d t<t, t^{\wedge} 2, t^{\wedge} 3>\right] / \operatorname{sqrt}\left(1^{\wedge} 2+(2 t)^{\wedge} 2+\left(3 t^{\wedge} 2\right)^{\wedge} 2\right)$

$$
=\left\langle 12 t^{2}-6 t^{2},-(6 t), 2\right\rangle=\left\langle 6 t^{2},-6 t, 2\right\rangle
$$

