Lett $f(x, y)=\mathbb{x}^{2}+y^{2}-4 \mathbb{x}-6 \mathbb{y}+2$
Then $f_{x}(\mathbb{x}, \mathbb{y})=2 \mathbb{Z}-4 \Rightarrow 2 \mathbb{X}-4=0 \Rightarrow \mathbb{X}=2$

$$
f_{y}(\mathbb{X}, \mathbb{y})=2 \mathbb{2}-6 \Rightarrow 2 \mathbb{y}-6=\mathbb{0} \Rightarrow \mathbb{y}=3
$$

So there is a criticall poinit att (2,3). Iff we compllete the squure, we get
$f(x, y)=\left(x-\frac{4}{2}\right)^{2}-\left(\frac{4}{2}\right)^{2}+\left(y-\frac{6}{2}\right)^{2}-\left(\frac{6}{2}\right)^{2}+2$
$\mathbb{f}(\mathbb{x}, \mathbb{y})=(\mathbb{x}-2)^{2}-4+(\mathbb{y}-3)^{2}-9+2=(\mathbb{x}-2)^{2}+(y-3)^{2}-\mathbb{1} \mathbb{1}$
Notice thatt $(\mathbb{x}-2)^{2} \geq 0$ and $(y-3)^{2} \geq 0$, so these make
the the walues off just get bigger ænd biggerr, starting firom $z=-110$. $(2,3,-11)$

For $\mathbb{f}(x, y)=y^{2}-x^{2}$, we get:
$\mathbb{f}_{\mathbb{x}}=-2 \mathbb{Z} \Rightarrow-\mathbb{Z} \mathbb{X}=\mathbb{C} \Rightarrow \mathbb{X}=\mathbb{0}$
$\mathbb{H}_{y}=2 \boldsymbol{2} \Rightarrow 2 \mathbb{Z}=\mathbb{0} \Rightarrow \mathbb{Z}=\mathbb{0}$
When we move allong the \mathbb{x} axis, we get $\mathfrak{f}(\mathbb{x}, \mathbb{0})=-\mathbb{x}^{2}<\mathbb{0},(\mathbb{x} \neq \mathbb{0})$
When we move ælong the y खxis, we get $\mathcal{H}(\mathbb{O}, y)=y^{2}>0,(y \neq 0)$
So every disk with cener (0,0) contains points giving values of f above nad bellow the xy plane.
Since this is the case, $(\mathbb{O}, 0)$ doesnit give an extreme value.

The graph shows one samplle diusk wheree there ære poinits such that $\mathbb{f}>0$ and $\mathbb{f}<0$.
Since this surface looks like a sadidlle, the point (0,0) is callled a saddille point off

Second Partial Derivatives Test:
Suppose the second partial derivatives of f ære continurous on a diusk with center (a,b), æud suppose that $f_{x}(a, b)=0$ and $f_{y}(a, b)=0[$ That is, (a, b) is a critical point of f]. Tt can be proved using Tayloris Formulla that we caun sturly the behavior of f using the following: (Sectroin 14ot, Thomas Calcullus, H1th

은 If $\mathbb{D}>0$ and $f_{\text {tar }}(a, b)>0$, then $f(a, b)$ is a locall miniumum. (Graplh goes up in all diveections。)
iii If $\mathbb{D}>0$ and $\mathfrak{f}_{x x}(a, b)<0$, then $f(a, b)$ is a locall maximuum. (Graph goes down in all directions.)
iiii Iff $\mathbb{D}<0$, then $f(a, b)$ is not allocall minimuum orr maximumm.
In case iiin, (a,b) is caulled a sadidle point off and the graph of f crosses its tangent plane ait (a,b).

If $\mathbb{D}=0$, the test is inconclusive. We coulld have a sadldlle point, a miniunuum or a maxiunuwn.
To rememiber this formulla, write in detterminant form:
$\left|\begin{array}{ll}\mathbb{f}_{x a x} & f_{x y y} \\ f_{y y x} & f_{y y y}\end{array}\right|=f_{x a x} f_{y y y}-\left(f_{y x y}\right)^{2}$, sincee $f_{y y x}=f_{x y y}$

Find the local max. and minn. values and saddille poinits of
$f(x, y)=x^{4}+y^{4}-4 x y+\mathbb{1}$
$\mathbb{f}_{x}=4 x^{3}-4 y \Rightarrow 4 x^{3}-4 y=0 \Rightarrow$ dividide 4 outt $\Rightarrow x^{3}=y$ (solve for y)
$f_{y}=4 y^{3}-4 \mathbb{X} \Rightarrow 4 y^{3}-4 \mathbb{X}=0 \Rightarrow$ divide 4 outt $\Rightarrow y^{3}=\mathbb{x}$ (solve for \mathbb{x})
$\operatorname{In} y^{3}=\mathrm{x}$, repllace y with x^{3} firmm the firirst one, to get $\left(x^{3}\right)^{3}=\mathbb{x} \Rightarrow x^{9}=\mathbb{x}$
now sollve this:
$x^{9}-\mathbb{x}=0$
$x\left(\mathbb{x}^{8}-\mathbb{1}\right)=0$
$x\left(\left(x^{4}\right)^{2}-\mathbb{1}\right)=0$
$\mathbb{x}\left(\mathbb{x}^{4}-\mathbb{1}\right)\left(\mathbb{x}^{4}+\mathbb{1}\right)=0$
$\mathbb{x}\left(\mathbb{x}^{2}-\mathbb{1}\right)\left(x^{2}+\mathbb{1}\right)\left(x^{4}+\mathbb{1}\right)=0$

So we have three reall roots: $=1,0,1$.
To create $\mathbb{D}(x, y)$, we need the second partials:
$\mathbb{H}_{\operatorname{tax}}=\frac{\partial}{\partial \mathbb{x}} \mathbb{E}_{\mathrm{x}}=12 \mathbb{x}^{2}$
$\mathbb{H}_{y y}=\frac{\partial}{\partial y} f_{y}=12 y^{2}$
We can now wrifite

$$
\mathbb{D}(\mathbb{X}, \mathbb{y})=\left(\mathbb{1 2} \mathbb{X}^{2}\right) \cdot \mathbb{1} 2 y^{2}-(-4)^{2}=144 x^{2} y^{2}-16
$$

$\left.\mathbb{f}_{x y y}=\frac{\partial}{\partial y} \mathbb{f}_{x \mathrm{x}}=\frac{\partial}{\partial y}\left(4 x^{3}-4 y\right)=-4\right)$
We now test:
$\mathbb{D}(0,0)=-\mathbb{1} 6<\mathbb{0}$, we Thave that the origin is a saddlle point. (no max ori min att (0,0$)$)
When $\mathbb{x}=\mathbb{1}$, we have $\mathbb{y}=(\mathbb{1})^{3}=\mathbb{1}$, so we have $\mathbb{D}(\mathbb{1}, \mathbb{1})=\mathbb{1} 44-\mathbb{1} 6=\mathbb{1} 28>0$, ænd $\mathbb{f}_{\text {tax }}(\mathbb{1}, \mathbb{1})=\mathbb{1} 2>0$, so we have allocall locall min att $(\mathbb{1}, \mathbb{1})$,where $\mathbb{f}(\mathbb{1}, \mathbb{1})=2-4+\mathbb{1}=-2+\mathbb{1}=-\mathbb{1}$
When $\mathbb{x}=-\mathbb{1}$, we have $y=(-\mathbb{1})^{3}=-\mathbb{1}$, so we gett $\mathbb{D}(-\mathbb{1},-\mathbb{1})=\mathbb{1} 44(-\mathbb{1})^{2}-16=\mathbb{1} 44-16=\mathbb{1} 28>0$ and $\mathbb{f}_{\operatorname{xax}}(-\mathbb{1},-\mathbb{1})=\mathbb{1} 2(-\mathbb{1})^{2}=\mathbb{1} 2>0$, so we get a local minimuum again

As the gaph shows, we have two points $(1,1)$ ænd $(-1,-1)$ where theree ære minimuums æud a saddlle point onn (0,0).
Forir both (1,1) and $f(-1,-1)$ we get $\mathbb{f}(\mathbb{1}, \mathbb{1})=\mathbb{f}(-\mathbb{1},-\mathbb{1})=-\mathbb{1}$ as the lowest value of zo

Find and cllassify the criticall points of the function
$\mathbb{f}(x, y)=10 x^{2} y-5 x^{2}-4 y^{2}-x^{4}-2 y^{4}$
$f_{x}=20 x y-10 x-4 x^{3} \Rightarrow$ factor $2 x \Rightarrow 2 x\left(10 y-5-2 x^{2}\right)=0$
We have to solve this system.
$f_{y}=10 \mathbb{x}^{2}-8 y-8 y^{3} \Rightarrow 10 x^{2}-8 y-8 y^{3}=0 \Rightarrow$ dividice 2 2wखy $\Rightarrow 5 \mathbb{x}^{2}-4 y-4 y^{3}=0$)
forl $2 x\left(10 y-5-2 x^{2}\right)=0:$
$x=0$ (1) $\mathbb{1 O} y-5-2 x^{2}=0$

When $\mathbb{X}=0,5 x^{2}-4 y-4 y^{3}=0$
becomes $-4 y^{-}-4 y^{3}=0$

$$
-4 \mathbb{y}\left(\mathbb{1}+y^{2}\right)=0
$$

$s o y=0$ firom $=4 y=0$
and $1+y^{2}$ is never 0°.
Thus, we get the critticall point (0,0).
Using the values we have on the right from the gropph, we get
$x^{2}=5 y-2.5$
$x= \pm \sqrt{5 y-2.5}$
$y \approx-2.5452 \Rightarrow \mathbb{X}= \pm \sqrt{5(-2.5452)-2.5}$ not a reall result here

$$
\begin{aligned}
\mathbb{y} \approx 0.6468 \Rightarrow \mathbb{x} & = \pm \sqrt{5 \cdot 0.6468-2.5} \\
& = \pm \sqrt{0.7340} \\
& = \pm 0.856738
\end{aligned}
$$

$\mathbb{y}=\mathbb{1 . 8 9 8 4} \Rightarrow \mathbb{X}= \pm \sqrt{5 \cdot 1.89844^{-2.5}}$
$= \pm 2.644239$

When $10 y-5-2 x^{2}=0$ we get
$-2 x^{2}=-10 y+5$
$x^{2}=+5 y-2.5$
We can pluyg this in forr x^{2} in $5 x^{2}-4 y-4 y^{3}=0$ to get $5(5 y-2.5)-4 y-4 y^{3}=0$

We can groplh this equation ænd look for the roots to make a reasomable estimatte.
We can estinnate the roots to be about
$y \approx-2.5452$ $y=0.6468$
mand $y \approx 1.8984$

So all our points ære the folllowing:
($\mathbb{0}, \mathbb{0}$)
($\pm 2.644239,1.8984$)
($\pm 0.856738,0.6468$)

$\mathbb{D}(\mathbb{O}, \mathbb{0})=(-\mathbb{1})(-8)=80>0, f_{\text {for }}(\mathbb{O}, 0)=-\mathbb{1} 0<0$, so we lhave a locall max att (0,0$)$.
$\mathbb{D}(\pm 2.644239,1.8984)=2488.72>0, f_{\text {fax }}(\pm 2644239,1.8984)=-55.93<0$, so we thave a llecull max $\mathbb{D}(\pm 0.856738,0.6468)=-187.64$, so we lhave a saddllle poinit.

The growph of the surface confirms the matth above.

Find the shortest distance from the point $(1,0,-2)$ to the pllane $\mathbb{x}+2 y+z=4$.
disistance firom खuy poinit ($x, y, y z)$ to the poinit $(\mathbb{1}, 0,-2)$ is $d=\sqrt{\left.(x-1)^{2}+(y-0)\right)^{2}+(z-(-2))^{2}}$ $\sqrt{(x-\mathbb{1})^{2}+y^{2}+(z+2)^{2}}$

$$
=\sqrt{(\mathbb{x}-\mathbb{1})^{2}+y^{2}+(z+2)^{2}}
$$

Solve forl zin the plane:
$\mathbb{Z}=4-\mathbb{x}^{-2 \boldsymbol{2}} \mathbf{y}$
Plug into distance function: $d(x, y)=\sqrt{(x-\mathbb{1})^{2}+y^{2}+(4-\mathbb{x}-2 y+2)^{2}}=\sqrt{(x-\mathbb{1})^{2}+y^{2}+(6-\mathbb{x}-2 y)^{2}}$
We can mimimize dl by minimizing the expression uunder the root symbol:
$d d^{2}=\mathbb{A}(\mathbb{X}, \mathbb{y})=(\mathbb{x}-\mathbb{1})^{2}+y^{2}+(6-\mathbb{x}-2 y)^{2}$
$\mathbb{f}_{x}=2(\mathbb{2}-\mathbb{1})+2(6-\mathbb{x}-2 y)(-\mathbb{1})=2 \mathbb{2}-2-\mathbb{1} 2+2 \mathbb{2}+4 y=4 \pi+4 y-14 \quad \Rightarrow \mathbb{f}_{\operatorname{tax}}=4$
$\mathbb{f}_{y}=2 \mathbb{2} y+2(6-\mathbb{x}-2 y)(-2)=2 y+(12-2 \mathbb{2}-4 y)(-2)=2 y-24+4 x+8 y=4 \mathbb{Z}+10 y-24 \quad f_{y y}=10$
$4 x^{x}+4 y-14=0$
$4 x+4 y-14=0$
adid dlown
$4 \mathbb{x}+\mathbb{1 0} y-24=0 \Rightarrow-\mathbb{1}(4 \mathbb{x}+\mathbb{1 0} y-24=0) \Rightarrow-4 \mathbb{x}-10 y+24=0 \quad 0-4 \mathbb{x}-10 y+24=0$
Using $x=\frac{5}{3}$, we get $4(x)+4 \cdot \frac{5}{3}-14=0$
$-6 \mathbb{y}=\mathbb{1 4}-2.24$
$4 \mathbb{x}=-\frac{20}{3}+14$
$4 x=\frac{-20}{3}+\frac{42}{3}$
$-6 y=-10$
$\mathbb{y}=\frac{\mathbb{1 0}}{6}=\frac{5}{3}$

$$
4 \mathbb{x}^{\mathbb{x}}=\frac{22}{3}
$$

$$
\mathbb{X}=\frac{2 \mathbb{2}}{\mathbb{1} \mathbb{Z}}=\frac{\mathbb{1}}{6} \quad \mathbb{f}_{x y y}=\frac{\partial}{\partial \mathbb{y}} \mathbb{f}_{\mathbb{x}}=\frac{\partial}{\partial \mathbb{y}}(4 \mathbb{X}+4 \mathbb{y}-\mathbb{1} 4)=4
$$

Create $\mathbb{D}(11 / 6,5 / 3)=4 \cdot 10-4^{2}=40-16=24>0, f_{\text {fex }}(11 / 6,5 / 3)=4>0$, so the point
(11/6,5/3) gives a locall minimumm. In this case, the minimumn distance is found as follows: d $(\mathbb{1} 11 / 6,5 / \mathfrak{Z})=\sqrt{(\mathbb{x}-\mathbb{1})^{2}+y^{2}+(6-\mathbb{x}-2 y)^{2}}=\sqrt{(\mathbb{1} 1 / 6-\mathbb{1})^{2}+(5 / \mathfrak{Z})^{2}+(6-\mathbb{1} / 6-2(5 / 3))^{2}}=2.0412$ units.

A rectangullar box without a lid is to be madle firom $12 m^{2}$ of cardboard. Find the maximumm vollume off such a box.
The volume of the box is $\mathbb{V}=x y z$. Just mulitiplly the edge lengths trogether.
The surface ærea is $2 \mathbb{Z Z}+2 y \mathbb{Z}+\mathbb{K y}=\mathbb{1 2}$ 。
The surface is side+side+bottomn+firont+back.

X

We can malke the volume inito a functio of x, y allone by solving for zin plame:
$2 \mathbb{Z} \mathbb{Z}^{+} \underline{2} \mathbb{Z} \mathbb{Z}=\mathbb{1} \mathbb{2}-\mathbb{Z} y$
$z(2 \mathbb{X}+2 y)=\mathbb{1 2}-X y$
$Z=\frac{12-x y}{2 \pi+2 y}$
So $\mathbb{V}=x y \cdot \frac{12-x y}{2 x+2 y}=\frac{12 x y-x^{2} y^{2}}{2 x+2 y}$
So we gett $(x, y)=\frac{2 x y-x^{2} y^{2}}{2 x+2 y}$

$$
\begin{aligned}
& =(2 x+2 y)^{-2}\left[\left(\mathbb{1} 2 y-2 x y^{2}\right)(2 x+2 y)-2\left(\mathbb{1} 2 x y-x^{2} y^{2}\right)\right] \\
& =\frac{\left(12 y-2 x y^{2}\right)(2 x+2 y)-2\left(12 x y-x^{2} y^{2}\right)}{(2 x+2 y)^{2}} \\
& =\frac{24 x y+24 y^{2}-4 y^{2} y^{2}-4 x y^{3}-24 x y+2 \not x^{2} y^{2}}{(2 x+2 y)^{2}} \\
& =\frac{-2 x^{2} y^{2}+24 y^{2}-4 x y^{3}}{(2 x+2 y)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 y^{2}\left(-x^{2}+12-2 \mathbb{Z} y\right)}{2^{2}(\mathbb{x}+y)^{2}} \\
& =\frac{y^{2}\left[\mathbb{1} 2-2 \mathbb{Z} y^{2}-x^{2}\right]}{2(\mathbb{x}+y)^{2}}
\end{aligned}
$$

Alot of simillare work shows thatt $\frac{\partial}{\partial y} \frac{12 x y-x^{2} y^{2}}{2 x+2 y}=\frac{x^{2}\left(12-2 x y-y^{2}\right)}{2(x+y)^{2}}$
Setting these equall to o gives us
$\frac{x^{2}\left(\mathbb{1 2}-2 x y-y^{2}\right)}{2(x+y)^{2}}=\mathbb{O} \Rightarrow \mathbb{x}^{2}\left(\mathbb{1} 2-2 x y-y^{2}\right)=\mathbb{O} \Rightarrow \mathbb{X}=\mathbb{0}$, $11 \mathbb{1} \mathbb{1} 2-2 x y-y^{2}=\mathbb{0}$
$\frac{\mathbb{y}^{2}\left[12-2 x y-x^{2}\right]}{2(x+y)^{2}}=\mathbb{0} \Rightarrow y^{2}\left(\mathbb{1 2}-2 x y-\mathbb{x}^{2}\right)=\mathbb{0} \Rightarrow y=\mathbb{C}$, $\mathbb{O H} \mathbb{1} \mathbb{2}-2 \mathbb{2} y-\mathbb{x}^{2}=\mathbb{0}$
With $\mathbb{x}=\mathbb{0}, y=\mathbb{O}$, we donit have a vollume, so
sollving for x^{2} and y^{2} we get
$12-2 \mathbb{2} y=y^{2}$
$12-2 x y=\mathbb{x}^{2}$
Equuating these we get $x^{2}=y^{2}$, and since $x>0, y>$ © for plhysicall reasons(itis a box), we get $x=y$. Repllacing y with x in $12-2 x y-x^{2}=0$, we get $12-2 x^{2}-x^{2}=0 \Rightarrow 12-3 x^{2}=0 \Rightarrow 3 x^{2}=12$

So we get $\mathbb{x}=2, y=2, z=1$. As the growph of the volume shows, weire $\mathfrak{a t} \mathbb{z}=\mathbb{1}$ att $\mathbb{x}=2, y=2$.

Find the absolutte maxximmum and minimmum values of the fumetion

$T \mathrm{~T}$ ænswer, we use the extreme value theorem æpproppriate to multivariable calculus.
Find the values of f at the criticall poinit of \mathbb{D}.
Find the extrreme values of f on the boundlary of \mathbb{D}.
The largest of these values firom the steps above is the absolute maximum value. The smallest of these values is the absolute minimum.
Find the criticall points:
$\mathbb{f}_{\mathbb{X}}=\frac{\partial}{\partial \mathbb{x}}\left(\mathbb{x}^{2}-2 \mathbb{2} y+2 y\right)=2 \mathbb{X}-2 y \Rightarrow 2 \mathbb{Z}=2 y \Rightarrow \mathbb{X}=\mathbb{y}$

Next look att the boundlaries:

Along the bound wry where $\mathbb{x}=3$, we get $\mathcal{A}(3, y)=3^{2}-2 \cdot 3 y+2 y=9-6 y+2 y=9-4 y$. This is a decreasing frumetion. Att $\mathbb{x}=\mathfrak{B}, y=2$, we get $\mathbb{A}(\mathbb{3}, \mathfrak{2})=9-4(\mathfrak{2})=9-8=\mathbb{1}$ 。
Along the boundary wheree $y=2$, we get $\mathcal{A}(x, 2)=x^{2}-2 x \cdot 2+2 \cdot 2=x^{2}-4 x+4$ This is a parabola $\mathbb{f}^{\prime}(\mathbb{x}, 2)=2 \mathbb{2}-4 \Rightarrow \mathbb{H}^{\prime}(\mathbb{x}, 2)=2 \mathbb{2}-4=0 \Rightarrow \mathbb{x}=2 \mathbb{A} \mathbb{A} \mathbb{x}=2$, we gett $(2,2)=2^{2}-2 \cdot 2 \cdot 2+2 \cdot 2=4-8+4=0$
Comparing all these wallues shows that the minimumn is 10 att (2,2) and the maximumn is 9 att (3,0).

