Complete the table below for quadratic equation $y=x^{2}+3$. Then plot all the points and graph the parabola.

When graphing the parabola use the vertex and one of the other points.

x	$y=x^{2}+3$	
-4	19	\checkmark
-2	7	0^{6}
0	3	0^{6}
2	7	0^{6}
4	19	0^{6}

graphing
$x=-4$ so we get $y=(-4)^{2}+3=16+3=19$
$x=-2$ so we get $y=(-2)^{2}+3=4+3=7$
$x=0$ so we get $y=0^{2}+3=3$
$x=2$ so we get $\mathrm{y}=2^{2}+3=4+3=7$
$x=4$ so we get $y=4^{2}+3=16+3=19$
To graph by hand, mark the points and connect them with curved lines.

To graph in MyOpenMath, use the parabola tool. Mark the point $(0,3)$ and then one other point like $(2,7)$.
Rest of the graph gets filled in automatically.

Mark Question for Use

Place dots on the graph to mark the y-intercept and x-intercepts of the parabola.

x intercepts b / c this is where the graph crosses the x -axis -2,2

The y-intercept occurs when $y=20$
The x-intercepts are at $x=-2,20^{\circ}$
Use a comma to separate your answers.

Complete the table using $y=|x-2|-2$. Then plot the points on the graph.
Is the function linear?

$y=|x-2|-2$
$x=0: y=|0-2|-2=2-2=0,(0,0)$
$x=1: y=|1-2|-2=|-1|-2=1-2=-1,(1,-1)$
$x=2: y=|2-2|-2=|0|-2=0-2=-2,(2,-2)$
$x=3: y=|3-2|-2=|1|-2=1-2=-1,(3,-1)$
$x=4: y=|4-2|-2=|2|-2=2-2=0,(4,0)$

For math 201 , just mark the dots. Press the dot button and place the dots. In general, after marking the dots, we'd connect them with straight line segments. Since this graph is not a straight

The points are all in a straight line (linear).
O The points are not all in a straight line (non-linear).

