Solving Systems of Three Linear Equations:
9/21/2021 (Part of section 2.1 in Sullivan's book)
When we have a system of three linear equations, each equation is usually a plane.

a system of three equations has exactly one solution point this is called a consistent system
computer drawn pictures are on page 59 of sullivan

infinite number of solutions b / c the intersection line between the planes is infinite the three planes are really the same plane
this line works for two of the planes

red line works as a solution for two of the equations ${ }^{\text {no }}$ solution but not the third you can also have three parallel planes, so no solution again

Solving a system of three equation in three unknowns:
$\left\{\begin{array}{l}x^{+} y-z=-1 \\ 4 x-3 y+2 z=16 \\ 2 x^{-}-2 y-3 z=5\end{array}\right.$
geometrically, this is a system of three equations, each of which represents a plane

How do we find the point (x, y, z) that solves the system?
To solve the system means to make each equation true with the point (x, y, z).
multiply the top by -4 and add to the second equation to get a NEW second equation. $-4(x+y-z=-1) \Rightarrow-4 x-4 y+4 z=4$
middle equatio: $\frac{x x-3 y+2 z=16}{-7 y+6 z=20}$ this is the new middle equation
equivalent system:

$$
\left\{\begin{array}{l}
x+y^{-} z=-1 \\
-7 y^{+}+6 z=20 \\
2 x^{-}-2 y^{-}-3 z=5
\end{array}\right.
$$

multiply top equation by -2 and add that to the bottom equation: $-2(x+y-z=-1) \Rightarrow-2 y-2 y+2 z=2$ bottom equation: $\mathscr{2} x-2 y-3 z=5$
$-4 y^{-} z=7$ this is the new bottom equation
new equivalnet system:

$$
\left\{\begin{array}{l}
x+y^{-} z=-1 \\
-7 y^{+}+6 z=20 \\
-4 y^{-} z=7
\end{array}\right.
$$

Notice that the bottom two equations form their own little subsystem:
$-7 y+6 z=20$
Note for this subsystem we can find y and z
$-4 y^{-} z=7$ b / c we have two equations and two variables.
$-7 y+6 z=20$ say we want to get rid of z top stays as $-7 y+6 z=20$

$$
-24 y-8 z=42
$$

now add the two
$-4 y^{-} z=7 \leftarrow$ multiply this by 6 :
$-31 y=62$
final equivalent system:

$$
\begin{aligned}
& 6(-4 y-z=7) \\
& -24 y-6 z=42
\end{aligned}
$$

$$
\left\{\begin{array}{l}
x+y-z=-1 \\
-7 y+6 z=20 \\
-31 y=62
\end{array}\right.
$$

from bottom equation of final system:
$-31 y=62$
$y=-2$
from middle equation of final system, we get $-7(-2)+6 z=20$

$$
\begin{aligned}
& 14+6 z=20 \\
& 6 z=20-14 \\
& 6 z=6 \\
& z=1
\end{aligned}
$$

now that we know $\mathrm{y}=-2$, $\mathrm{z}=1$, plug into top equation of final system:
$x-2-1=-1$
$x-3=-1$
$x=-1+3=2$
So the solution point is the point $(2,-2,1)$ This makes the top equation, middle equation and bottom eqution all true.

Solve the system $\left\{\begin{array}{l}-x-3 y-2 z=22 \\ -3 x-3 y-2 z=30 \\ -2 x+y-z=7\end{array}\right.$
Our goal is to produce equivalent systems along the way. $\left\{\begin{array}{l}\text { top equation with three variables } \\ \text { middle with two variables } \\ \text { bottom with one variable }\end{array}\right.$

1. we want to get rid of $-3 x$ in middle equation: so multiply top equation by -3 and add to middle equation: $-3(-x-3 y-2 z=22) \Rightarrow 3 / 49 y+6 z=-66$
copy the middle equation: $-3 x-3 y-2 z=30$
$6 y+4 z=-36$ new middle equation new equivalent system:

$$
\left\{\begin{array}{c}
-x-3 y-2 z=22 \\
6 y+4 z=-36 \\
-2 x^{+} y-z=7
\end{array}\right.
$$

2. Let's eliminate -2 x from bottom equation: multiply top equation by -2 and add to bottom equation: $-2(-x-3 y-2 z=22) \Rightarrow 2 x+6 y+4 z=-44$ add the bottom equation: $\frac{-\mathscr{2} x+y-z=7}{7 y+3 z=-37}$

$$
\begin{aligned}
& \text { new equivlanet system: } \\
& \left\{\begin{array}{l}
-x-3 y-2 z=22 \\
6 y+4 z=-36 \\
7 y+3 z=-37
\end{array}\right.
\end{aligned}
$$

3. Now solve the system formed by the middle and bottom equations: $6 y+4 z=-36$ get rid of z : $7 y+3 z=-37$ we have 4 and 3 as coefficients on z
one has to be positive and one negative
multiply top equation by $-3:-3(6 y+4 z=-36) \Rightarrow-18 y-12 z=108$ multiply bottom equation by $4: 4(7 y+3 z=-37) \Rightarrow \frac{28 y+12 z=-148}{10 y=-40}$

We have the final equivalnet system:
$\left\{\begin{aligned}-x-3 y-2 z & =22 \\ 6 y+4 z & =-36 \\ 10 y & =-40\end{aligned}\right.$

So the solution point is the point $(-4,-4,-3)$

From here, $10 y=-40$ gives $\mathrm{y}=-4$
Replace y with -4 in middle: $6(-4)+4 z=-36$

$$
\begin{aligned}
-24+4 z & =-36 \\
4 z & =-36+24
\end{aligned}
$$

$$
4 z=-12
$$

$$
z=-3
$$

In top equation, replace y with $-4, \mathrm{z}$ with -3 and solve for x :

$$
\begin{aligned}
& -x-3(-4)-2(-3)=22 \\
& -x+12+6=22 \\
& -x+18=22 \\
& -x=22-18 \\
& -x=4 \\
& x=-4
\end{aligned}
$$

Supply and Demand Example:
For a particular product, the supply equation is (y is the number of items, $\mathrm{y}=9 \mathrm{x}+520$
and the demand equation is
$y=-7 x+920$
What is the point of intersection:
Since each is already solved for y , equate the expressions with x :
$9 x+520=-7 x+920$
$9 x^{x}+7 x=920-520$
$16 x=400$
$x=\frac{400}{16}=25$
Now that $\mathrm{x}=25$, find $\mathrm{y}=9 \cdot 25+520=745$ So the system is solved by $(25,745)$
Now interpret: What is the selling price when supply and demand are in balance?
What is the number of items in the market when in balance? 745

The monthly supply and demand for a particular bike is represented in the accompanying graph. The quantity is in thousands and the price is in hundreds of dollars. Use the graph to answer the following. The demand curve is red and the the supply curve is blue.

(a) Approximately at what price is 3200 bikes supplied? $\$ 1400$ (Round to the nearest $\$ 50$.)
(b) Approximately at what price is 3200 bikes demanded? $\$ 7700$ σ^{6} (Round to the nearest \$50.)
(c) Estimate the equilibrium price. $\$ 5500 \quad \checkmark \quad 0^{6}$
(d) Estimate the equilibrium quantity.

