Calculus 1 Notes 9/26, Section 2.7
Please be sure your class notes in detail, as I write them, are loaded with your homework solutions.

Once we realize we can zoom in on a curve to make it look like a line, we can find the slope at any point .

$$
\frac{0.036-0.032}{0.19-0.180} \approx 0.4
$$

Now let $\mathrm{h} \rightarrow 0$!
$\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=$ slope at $x=a$!
on the graph of f !
prelim example: $f(x)=x^{2}$ and find the slope at $\mathrm{x}=\mathrm{a}$.

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0} \frac{(a+h)^{2}-a^{2}}{h}=\lim _{h \rightarrow 0} \frac{a^{2}+2 a h+h^{2}-a^{2}}{h}=\lim _{h \rightarrow 0} \frac{2 a h+h^{2}}{h}
$$

slope formula: $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ (similar logic though)

$$
=\lim _{h \rightarrow 0} \frac{\hbar(2 a+h)}{\nVdash}
$$

2 a represents the slope on the graph of f at $x=a$.
Once we know the slope, we can find the equation of the tangent line. Line that touches the graph at $x=a$.

$$
=\lim _{h \rightarrow 0}(2 a+h)
$$

Let's say we want the equation of the line at $\mathrm{x}=\mathrm{a}=1$. slope at $x=1$ is $2(1)=2$. Equation of line $y-y_{1}=m\left(x-x_{1}\right)$
Our m is 2 . W hen $x=1, f(1)=1^{2}=1$
$y-1=2(x-1) \quad y=2 x-1 \Leftarrow$ equation of tangent line!
$y-1=2 x-2$
$y=2 x-2+1$

example 2 in book:
Let $f(x)=\frac{3}{x}$ and find slope at $(3,1)$ and equation of tangent line at that point.
slope at $\mathrm{x}=3$ is $\lim _{h \rightarrow 0} \frac{\frac{3}{3+h}-\frac{3}{3}}{h} \xrightarrow{3 / 3=1} \lim _{h \rightarrow 0} \frac{\frac{3}{3+h}-1}{h} \xrightarrow{1 a s(3+h) /(3+h)} \lim _{h \rightarrow 0} \frac{\frac{3}{3+h}-\left(\frac{3+h}{3+h}\right)}{h}$ $\xrightarrow{\text { rewrite with common bottom in top }} \lim _{h \rightarrow 0} \frac{\frac{3-(3+h)}{3+h}}{h} \xrightarrow{\text { distribute the }-1} \lim _{h \rightarrow 0} \frac{\frac{3-3-h}{3+h}}{h}$
$\xrightarrow{\text { cancel off } 3 \text { and }-3} \lim _{h \rightarrow 0} \frac{\frac{-h}{3+h}}{\frac{h}{1}} \xrightarrow{\text { KEEP, CHANGE,FLIP }} \lim _{h \rightarrow 0}\left(\frac{-h}{3+h} \cdot \frac{1}{h}\right) \xrightarrow{\text { cancel } h} \lim _{h \rightarrow 0} \frac{-1}{3+h}$
$\xrightarrow{\text { direct sub. }} \frac{-1}{3+0}=-\frac{1}{3} \Leftarrow$ This represents the slope at $x=3$ on the graph of $3 / x$.
Equation of tangent line: $y-1=-\frac{1}{3}(x-3) \quad y=m x+b$:

$$
\begin{aligned}
& y-1=-\frac{1}{3} x-\frac{1}{3}(-3) \\
& y-1=-\frac{1}{3} x+\frac{3}{3} \\
& y-1=-\frac{1}{3} x+1 \\
& y=-\frac{1}{3} x+2 \Leftarrow \text { equation of tangent line }
\end{aligned}
$$

velocity: average velocity $=\frac{\text { displacement }}{\text { time }}=\frac{f(a+h)-f(a)}{h}, f$ represents position of object velocity at $\mathrm{t}=\mathrm{a}: \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
$f(a) \quad f(a+h)$
instantaneous velocity..velocity 0 at a particular instant in time
displacment=change in position
example 3: Suppose a ball is dropped from the deck of the CN Tower, (tower in Canada) , which is 450 meters above ground.
(a) velocity of ball after 5 seconds: position is $f(t)=4.9 t^{2} \Leftarrow$ (from physics)

We want the velocith at $\mathrm{t}=5$ (one instant in time)

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{4.9(5+h)^{2}-4.9 \cdot 5^{2}}{h} \xrightarrow{4.9 \text { factor out }} \lim _{h \rightarrow 0} \frac{4.9\left[(5+h)^{2}-5^{2}\right]}{h} \xrightarrow{\text { pull } 4.9 \text { outside }} 4.9 \lim _{h \rightarrow 0} \frac{(5+h)^{2}-25}{h} \\
& 4.9 \lim _{h \rightarrow 0} \frac{5^{2}+2(5) h+h^{2}-25}{h} \xrightarrow{\text { simplify top }} 4.9 \lim _{h \rightarrow 0} \frac{25+10 h+h^{2}-25}{h}=4.9 \lim _{h \rightarrow 0} \frac{10 h+h^{2}}{h} \\
& \xrightarrow{\text { factor } h \text { and divide it away }} 4.9 \lim _{h \rightarrow 0}(10+h) \xrightarrow{\text { direct substitution }} 4.9(10+0)=49 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

So at $\mathrm{t}=5$, (only this one instant in time) the object is going at 49 meters per second.

Derivatives:

The derivative of a function f at a number a, denoted by $f^{\prime}(a) \Leftarrow(f$ prime of $a)$ is $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
zoom in over a very tiny window so the curved function looks like a straight line!

example 4: Find the derivative of the function $f(x)=x^{2}-8 x+9$ at the number $x=a$.
Doing it by the defintion: $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
Limit is with respect to h
($\mathrm{h} \rightarrow 0$), so anything without h stays!

$$
=\lim _{h \rightarrow 0} \frac{(a+h)^{2}-8(a+h)+9-1\left[a^{2}-8 a+9\right]}{h}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{a^{2}+2 a h+h^{2}-8 a-8 h+9-a^{2}+8 a-9}{h} \text { (expand, distribute }-1 \text { and -8) } \\
& =\lim _{h \rightarrow 0} \frac{2 a h+h^{2}-8 h}{h} \xrightarrow{\text { factor } h \text { out }} \lim _{h \rightarrow 0} \frac{h(2 a+h-8)}{h} \xrightarrow{\text { cancel } h} \lim _{h \rightarrow 0}(2 a+h-8) \\
& \xrightarrow{\text { direct sub. }} 2 a+0-8=2 a-8 \Leftarrow \text { leave a and }-8 \text { b/c neither has } h!
\end{aligned}
$$

The slope of $x^{2}-8 x+9$ at $x=a$ is $2 a-8!!$ Using this find equation of tangent line at ($3,-6$)
Evaluate f prime at $x=3: f^{\prime}(3)=2 \cdot(3)-8=6-8=-2 \Leftarrow$ goes into tangent line equation!! -2 is found but the point $(3,-6)$ is given!
$y-(-6)=-2(x-3) \Leftarrow$ plug into $y-y_{1}=m\left(x-x_{1}\right)$ where $\mathrm{m}=\mathrm{f}^{\prime}(\mathrm{a})$
$y+6=-2 x+6$
$y=-2 x+6-6$
$y=-2 x \Leftarrow$ equation of tangent line to the graph of $x^{2}-8 x+9$

Rates of Change:
slope $=$ rate of change $=\frac{\Delta y}{\Delta x}=\frac{\text { change in y coords. }}{\text { change in x coords. }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f(x+h)-f(x)}{h} \Leftarrow$ no limit!!
 slope of red line(secant line) is called the average rate of change of f.
$\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=$ average rate of change Δy is not $\Delta \cdot y$ it's "delta y " as one, unbreakable symbol!
Δx is like h(single symbol)
Practical Example/Example 6:
We're making bolts of fabric with a fixed width. The cost of producing x yards of this fabric is $C=f(x) . f(5)=c o s t$ to make 5 yards of fabric!!(not given an expression with x) (a) What is the meaning of $f^{\prime}(x)$? What are its units?
answer:The derivative gives us the instantaneous rate of change of the cost. More fully: rate of change of production cost with respect to the number of yards produced "with respect to " ..before it put the stuff on the vertical..after it put the indepdent variable

In symbols, $f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\Delta C}{\Delta x} \quad(\Delta \mathrm{C}=$ change in cost, $\Delta x=$ change in yards of fabric $)$
Here, we're using Δx to mean h, so we write

$f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\Delta C}{\Delta x}$

units: cost is in dollars, x is in yards, so rate of change units $=\frac{\text { dollars }}{\text { yards }}$
"dollars per yard"
(b) $f^{\prime}(1000)=9 \Leftarrow$ what does this mean?
$x=1000,9=9 / 1 \quad 9 \$ / 1 y$ yard
Product cost is increasing at a rate of $9 \$$ per yard! Only at $x=1000$ is the value 9 ! At $x=1001$ it could already be different.

$$
\begin{aligned}
& f(x)=x^{2} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-h^{2}}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=\lim _{h \rightarrow 0}(2 x+h) \\
& =2 x+0=2 x \Leftarrow \text { this is a function of } x!!(\text { not constant!!!) } \\
& f^{\prime}(1)=2 \cdot 1=2 \Leftarrow \text { On the graph of } x^{2} \text { at } x=1 \text { the slope is } 2 . \\
& f^{\prime}(2)=2 \cdot 2=4 \Leftarrow \text { On the graph of } x^{2} \text { at } x=2 \text { the slope is } 4 \text {. (different from } 2 \text { above) } \\
& f^{\prime}(-1)=2(-1)=-2 \Leftarrow \text { On the graph of } x^{2} \text { at } x=-1 \text { the slope is }=-2! \\
& 2 \neq 4=-2 \cdot(\text { the slope is a changing quantity } y!)
\end{aligned}
$$

The y-coordinate at $x=1$ of $2 x$ is the slope on the graph of x^{2} at $\mathrm{x}=1$!
Slope if found from red slope triangle at $x=1$ would be the y-coordinate on green graph at $x=1$!

