Make sure to take **DETAILED** notes and load them with your homework PDF. Section 2.2/Functions: It's getting to be flu/cold season, so if you're coughing a lot, please cover your mouth or wear a mask.

Def: A function is a set of points such that the first member of each point is unique. example 1: $f = \{(1, 2), (3, 4), (5, 6)\}, 1 \neq 3 \neq 5$ so f represents a function.

range is the set of outputs: $R=\{2,4,6\}(y-coords)$ domain is the set of inputs: $D=\{1,3,5\}(x-coords)$

so lve for y: $y = 1 - x^2$ x=1: $y = 1 - 1^2 = 1 - 1 = 0$ (1,0) x=-1: $y = 1 - (-1)^2 = 1 - 1 = 0$, (-1, 0) (1,0) vs (-1,0) $1 \neq -1$, so $x^2 + y = 1$ is a function.

To each x there corresponds exactly one value of y.

(b) $-x+y^2 = 1$ $y^2 = 1+x$ $\sqrt{y^2} = \pm \sqrt{1+x}$ $y = \pm \sqrt{1+x}$

x=3:(random value) $y = \pm \sqrt{1+3} = \pm \sqrt{4} = \pm 2$ we get (3,2) and (3,-2) Single x (x=3) corresponds to two values of y. So -x+y² =1 is not a function.

our own example for graphs(c)

← When a graph intersects a vertical line ONLY ONCE, the graph represents a function. This is called the Vertical Line Test.

Please email Hannah .

