Make sure to take DETAILED notes and load them with your homework PDF.
Section 2.2/Functions: It's getting to be flu/cold season, so if you're coughing a lot, please cover your mouth or wear a mask.

Def: A function is a set of points such that the first member of each point is unique. example 1: $f=\{(1,2),(3,4),(5,6)\}, 1 \neq 3 \neq 5$ so f represents a function.
range is the set of outputs: $R=\{2,4,6\}$ (y-coords)
domain is the set of inputs: $D=\{1,3,5\}$ (x-coords)
example 1(book)

x	y	(a)
2	11	$\rightarrow(2,11)$
2	10	$\rightarrow(2,10)$
3	8	$\rightarrow 2$ repeats! This set of points is NOT a function.

45
$5 \quad 1$
(b)

B / c we have different x coords, so plot of points is a function. Specific coords. don't matter.
example 2: book Does $\mathrm{x}^{2}+\mathrm{y}=1$ represent a function?
so lve for y : $y=1-x^{2}$
$\left.\begin{array}{l}\mathrm{x}=1: y=1-1^{2}=1-1=0(1,0) \\ \mathrm{x}=-1: y=1-(-1)^{2}=1-1=0,(-1,0)\end{array}\right\} \begin{aligned} & (1,0) \text { vs }(-1,0) \\ & 1 \neq-1, \text { so } x^{2}+\mathrm{y}=1 \text { is a function. }\end{aligned}$
To each x there corresponds exactly one value of y.
(b) $-x+y^{2}=1$
$\mathrm{x}=3$:(random value)
$y^{2}=1+x$
$y= \pm \sqrt{1+3}= \pm \sqrt{4}= \pm 2$
$\sqrt{y^{2}}= \pm \sqrt{1+x}$
we get $(3,2)$ and $(3,-2)$
$y= \pm \sqrt{1+x}$
Single $x(x=3)$ corresponds to two values of y.
So $-x+y^{2}=1$ is not a function.
our own example for graphs(c)
When a graph intersects a vertical line ONLY ONCE, the
graph represents a function. This is called the Vertical Line Test.

Please email Hannah .
 Both points have the same first member.
function notation: input x , output $\mathrm{f}(\mathrm{x})$, "f of $\mathrm{x} "$ point forms: $(x, y),(x, f(x))$, so $y=f(x)=o u t p u t!$ $f(x)=1-x^{2}$
$x=$ independent variable, $\mathrm{f}(\mathrm{x})$ is the output $1-x^{2}$ is how you find the output!
example 3 in book: $g(x)=-x^{2}+4 x+1$
$g(2) \leftarrow$ " g of 2"..replace every x with 2

$$
=-1 \cdot 4+8+1
$$

$=-1 \cdot 4+8+1$
$=-4+8+1$

$$
=-4+8+1
$$

point form: $(2,5)$
more clearly: $(x=2, y=5)$

$$
g(2)=-1(2)^{2}+4 \cdot 2+1
$$

$$
=5 \Leftarrow \text { output }
$$

$=5 \Leftarrow$ output
$-x^{2}$ means $-1 \cdot x^{2}=-1 \cdot(x)^{2}$ 2nd 1st
$3(b): g(t)(g$ of $t)(g$ times $t)$
every x gets replaced with t (on LHS and RHS)
$g(t)=-t^{2}+4 t+1 \quad$ (not this: $\left.g(x)=-t^{2}+4 t+1\right)$
3(c): $g(x+2)$ " g of x plus two" (not g times ($x+2)$)
every x gets replaced by $x+2$
$g(x+2)=-(x+2)^{2}+4(x+2)+1$, (keep the minus out of the parenthesis)

$$
\begin{array}{lr}
=-1\left[(x+2)^{2}\right]+4 x+4 \cdot 2+1 & (a+b)^{2}=a^{2}+2 a b+b^{2} \\
=-1\left[x^{2}+2 \cdot 2 \cdot x+2^{2}\right]+4 x+8+1 & (a+b)^{2}=a^{2}+b^{2} \text { (incorrect) } \\
=-1\left[x^{2}+4 x+4\right]+4 x+9 &
\end{array}
$$

$$
=-x^{2}=4 \bar{x}-4 \pm 4 \bar{x}+9 \quad \text { distribute }-1 \text { to each of the brackted terms }
$$

$$
=-x^{2}+5
$$

combine like terms
point form: $\left(x+2,-x^{2}+5\right)$
example 5 in book: Finding values for which $f(x)=0 \leftarrow$ this means $y=0$
$f(x)=-2 x+10$
$-2 x+10=0$ (set $\mathrm{f}(\mathrm{x})$ equal to 0$)$
$-2 x+10-10=0-10$
$-2 x=-10$
$x=5 \Leftarrow$ This is not 0 . This is a value of x that makes $-2 x+10$ equal 0 !

$$
f(5)=-2(5)+10=-10+10=0 \Leftarrow y \text { coord! point: }(5,0)
$$

5 is called the "zero" of the function not because it's 0 , but because it makes y come out to be 0!!
example 7: domains of functions:
$\mathrm{f}(\mathrm{x})=\sqrt{x}, x \geq 0 \Leftarrow$ inequality form
(a)

$[0, \infty)$ ([b/c of the = part, infinty is a concept, not a number, so always)) $\sqrt{0.2}, \sqrt{0.001}, \sqrt{4}, \sqrt{10000343}$ (not allowed here: $\sqrt{-5}$)

$$
\begin{aligned}
& \text { (b) } g(x)=\frac{1}{x+5} \quad \frac{1}{0 \Leftarrow \text { not allowed here! }} \\
& x+5 \neq 0 \quad \text { inequality } \\
& x \neq-5 \text { number line: }-\infty \ldots
\end{aligned}
$$

set-builder form:
interval notation: (from left to right based on picture) \{object such that condition\} $(-\infty,-5) \cup(-5, \infty)$ (interval form)

\qquad
-5
"condition" in math means either true or false.
(c) $h(x)=\sqrt{4-3 x}$ in general: $\sqrt{\text { expression }}$ (expression is whatever> $=0$)
$4-3 x \geq 0$ apply defintion of domain for square root functions
$-3 x \geq-4$
$x \leq \frac{4}{3} \Leftarrow$ inequality form, set-builder form: $\{$ object such that condition $\}$

PICTURE FORM FIRST:
$-\infty$.. 4/3
$\{x: x \leq 4 / 3\}$
verbalize as " set of all x such that x is less than or equal to four-thirds"
from left to right:
($-\infty, 4 / 3$] < says point left, = says use bracket!
INTERVAL FORM:
example 8: container dimensions:

right circular cylinder
$V(r) \Leftarrow$ " V of $r "$
$V=$ volume of can=amount of 3D space an object takes up! $V(r)=\pi r^{2} h \Leftarrow$ formula!!,radius
$h \quad h=$ height
ratio of height to radius is 4 : $\frac{h}{r}=4 \rightarrow h=4 r \Leftarrow$ had to be given!!
$V(r)=\pi r^{2}(4 r)=4 \pi r^{2} r=4 \pi r^{2+1}=4 \pi r^{3} \Leftarrow$ only r remains!
can $r=-1$? no..not physical
can $r=0$? We can measure 0 but there is no physical object still.
$r>0$ (then we have a real physical object we can hold) interval:(0, \varnothing)

