Math 111 Notes 9/25. Make sure your class notes are loaded with your homework solutions Section 2.1/Linear Equations in Two Variables: $y=m x+b, m=$ slope, $\mathrm{b}=y$-interce pt $y=m \cdot 0+b, x=0$

$$
\begin{aligned}
& =0+b \\
& =b
\end{aligned}
$$

ex1: graph $y=2 x+1$
$m=2=2 / 1$ Every time x increases by $1, \mathrm{y}$ increases by 2. y intercept=1

1. mark y intercept
2. from y intercept go 1 right
3. turn 90 degrees
4. go 2 up
5. mark second point
6. connect points with line

ex 2: $y=2$..means $y=0 x+2, m=0, b=2, y=0 x+2, y=0(1)+2(1,2), y=0(3)+2,(3,2)$ x can be any value but y is always 2 !

	$(0,2)$	
$(-4,2)$		$(3,2)$

$$
\begin{array}{ll}
\begin{array}{ll}
\operatorname{ex} 2: x+y=2 \\
x-x+y=2-x
\end{array} & y=2-\frac{1}{1} x \\
0+y=2-x & \left.y=2+\frac{-1}{1} x, b=2, \text { slope }=-1 / 1 \text { (1 right }, 1 \text { down! }\right) \\
y=2-x &
\end{array}
$$

slope formula: $m=$ slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$ but do not write $\frac{y_{2}-y_{1}}{x_{1}-x_{2}} \Leftarrow$ b/c subscripts don't match.

example 2 (book) :

$$
\left(x_{1}=-1, y_{1}=2\right),\left(x_{2}=2, y_{2}=2\right)
$$

slope from $(-1,2)$ to $(2,2)$:

$$
m=\frac{2-2}{2-(-1)}=\frac{0}{2+1}=\frac{0}{3}=0 \text { (should b/c our y-coords match) }
$$

slope from (3,4) to $(3,1)$ (x coors are the same for both)
$m=\frac{4-1}{3-3}=\frac{3}{0} \Leftarrow$ undefined! (slope $=\infty$) not a number
$\leftarrow(3,4)$
$\leftarrow(3,1)$

$\frac{m}{1}=\frac{y-y_{1}}{x-x_{1}}$
subscripted stuff is given!
cross multiply: $m\left(x-x_{1}\right)=1\left(y-y_{1}\right)$
we get $m\left(x-x_{1}\right)=y-y_{1} \leftarrow$ point-slope b/c we know (x_{1}, y_{1}) and m !
example 3(book): $m=3,(1,-2)$
$y-(-2)=3(x-1)$ (this form reveals the slope and a point on the line) we're going to make $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form(still has slope but has y intercept) $y+2=3 x-3$ (distribute 3 on RHS)
$y+2-2=3 x-3-2$
slope stays the same
$y+0=3 x-5$
$y=3 x-5 \Leftarrow$ slope $=3, \mathrm{y}$ intercept -5
example 4: parallel lines have the same slope

line thru $(2,-1)$ and parallel to $2 x-3 y=5$ parallel means same slope:
perpendicular line slopes:
slope=b/a
to get the slope, solve for y in $2 \mathrm{x}-3 \mathrm{y}=5$:
$2 x-2 x-3 y=5-2 x$
$-3 y=5-2 x$
$\frac{-3 y}{-3}=\frac{5}{-3}-\frac{2 x}{-3}$
$y=-5 / 3+\frac{2}{3} x \Leftarrow$ slope is $2 / 3$
use this with $(2,-1)$ and $m=2 / 3$ to find equation of parallel line:

$$
\begin{aligned}
& y-(-1)=\frac{2}{3}(x-2) \\
& y+1=\frac{2}{3} x-\frac{2}{3}\left(\frac{2}{1}\right) \\
& y+1=\frac{2}{3} x-\frac{4}{3} \\
& y=\frac{2}{3} x-\frac{4}{3}-1 \\
& y=\frac{2}{3} x-\frac{4}{3}-\frac{3}{3} \\
& y=\frac{2}{3} x-\frac{7}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { product: } \frac{a}{-b}\left(\frac{b}{a}\right)=-1 \\
& \qquad y=m x+b \text { or } \mathrm{y}=\mathrm{b}+\mathrm{mx}
\end{aligned}
$$

$$
A=(0 \text { year, } 12000 \$) \quad B=(\text { year } 8,2000 \$)
$$

$m=$ slope $=$ rate of value loss $=\frac{\text { dollars }}{\text { time }}=\frac{2000-12000}{8-0}=\frac{-10000}{8}=\frac{-1250 \$}{\text { year }}$
make an equation: (time, Value)
the formula $y-y_{1}=m\left(x-x_{1}\right)$ now becomes $V-V_{1}=m\left(t-t_{1}\right)$ plug in: $V-12000=-1250(t-0)($ using $(0,12000)) \quad\left(t_{1}, V_{1}\right)$ $V-12000=-1250 t-1250(-0)$

$V-12000=-1250 t+0$
$V-12000=-1250 t$
$V=-1250 t+12000 \Leftarrow$ Give us the book value of equipment for any t .
$y=m x+b \rightarrow y-m x=b \rightarrow y-m x-b=0$
general form of line: $A x+B y+C=0$

$y=2 x-4$
$y-2 x+4=0$
$-2 x+y+4=0$
$\underbrace{2 x-y-4=0}_{\text {general form }}$
$a=2, b=-1, c=-4$
:---
our moves are
right, the forms
are all
equivalent.

