Make sure your class notes are saved together with your homework solutions in your PDF. Section 2.2/Gaussian Elimination:

A matrix is a rectangular array of numbers.
$\left.\begin{array}{|c|cc}{\left[\begin{array}{lll}a_{1,1} \\ a_{2,1}\end{array}\right.} & \left.\begin{array}{ll}a_{1,2} & a_{1,3} \\ a_{2,2} & a_{2,3}\end{array}\right] \\ \hline a_{3,1} & a_{3,2} & a_{3,3}\end{array}\right]$,
column
$a_{1,3} \leftarrow$ entry in row 1 , column 1
$a_{2,2}=$ entry in row 2 , column 2
$a_{3,1}=$ entry in row 3 , column 1

Goal is still to solve systems but do it in a more efficient way (more compact notation) Augmented Matrix:
$\left\{\begin{array}{l}2 x+3 y=5 \\ -1 x+4 y=10\end{array} \Leftarrow 2\right.$ by 2 system (two variables, two equations)
matrix form: $\left(\begin{array}{ccc}2 & 3 & 5 \\ -1 & 4 & 10\end{array}\right) \Leftarrow$ augmented matrix for the system b/c 5 and 10 appear
All the variables get stripped away.
$\left\{\begin{array}{l}1 x+1 y+1 z=3 \\ -1 x+2 y-1 z=5 \\ 2 x-1 y+3 z=10\end{array} \xrightarrow[\text { coeffcients }]{\text { augmented matrix form }}\left[\begin{array}{cccc}\begin{array}{ccc}1 & 1 & 1 \\ \hline\end{array} & 3 \\ -1 & 2 & -1 & 5 \\ 2 & -1 & 3 & 10\end{array}\right]\right.$
Let's solve a system using this:
Allowed row operations on matrices: (matrix is singular, matrices is plural) example 3/page 72 :
$\left\{\begin{array}{l}x+2 y=3 \\ 4 x-1 y=2\end{array} \xrightarrow{\text { augmented matrix form }}\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & -1 & 2\end{array}\right) \Leftarrow\right.$ same goal..make a matrix where
Where the 4 is we want 0 : of the form $\left(\begin{array}{lll}a & b & c \\ 0 & 1 & e\end{array}\right)$ $\left(\begin{array}{ccc}1 & 2 & 3 \\ 4-4(1) & -1-4(2) & 2-4(3)\end{array}\right) \quad \leftarrow R_{2}=r_{2}-4 r_{1}, R_{2}=$ new row 21 mean $1 \mathrm{y}=\mathrm{e}$
$=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4-4 & -1-8 & 2-12\end{array}\right)$
$\begin{array}{rl}\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & -9 & -10\end{array}\right) \xrightarrow{x} \begin{array}{l}y\end{array} \xrightarrow{\text { divide row } 2 \text { by }-9}\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 /-9 & -9 /-9 & -10 /-9\end{array}\right)=\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 10 / 9\end{array}\right) \\ x & y\end{array}$ $y=10 / 9 \mathrm{~b} / \mathrm{c} \quad\left(\begin{array}{lll}0 & 1 & 10 / 9\end{array}\right)$ means $1 \mathrm{y}=10 / 9$

Since $y=10 / 9$, plug into top equation and get $x: x+2\left(\frac{10}{9}\right)=3$ solution point
allowed row operations on matrices:

1. swapping rows b/c placemnt of any row in a system is made up, so you're free to swap rows.
2. dividing a row by a constant
3. multiplying rows by constants and adding them together

$$
x+\frac{20}{9}=3 \quad\left(\frac{10}{9}, \frac{7}{9}\right)
$$

$$
x=3-\frac{20}{9}
$$

$$
x=\frac{27-20}{9}
$$

$$
x=\frac{7}{9}
$$

this is all just arithmetic: $+,-, \cdot, /$

Solve using matrices:
$\left\{\begin{array}{l}x-y+z=8 \\ 2 x+3 y-z=-2 \\ 3 x-2 y-9 z=9\end{array}\right.$
$\xrightarrow{\text { augmented form }}\left[\begin{array}{cccc}1 & -1 & 1 & 8 \\ 2 & 3 & -1 & -2 \\ 3 & -2 & -9 & 9\end{array}\right]$
$x \quad y \quad z \quad$ RHS
$\begin{aligned} & R_{2}=r_{2}-2 r_{1} \\ & R_{3}=r_{3}-3 r_{1}\end{aligned}\left[\begin{array}{cccc}1 & -1 & 1 & 8 \\ 2-2(1) & 3-2(-1) & -1-2(1) & -2-2(8) \\ 3-3(1) & -2-3(-1) & -9-3(1) & 9-3(8)\end{array}\right] \Leftarrow R_{2}=r_{2}-2 r_{1}$
$\xrightarrow{\text { simplify }}\left[\begin{array}{cccc}1 & -1 & 1 & 8 \\ 0 & 5 & -3 & -18 \\ 0 & 1 & -12 & -15\end{array}\right]$
\Leftarrow form $\left\{\begin{aligned} 1 x-1 y+1 z & =8 \\ 5 y-3 z & =-18 \\ 1 y-12 z & =-15\end{aligned}\right.$
$R_{2}=r_{3}$
$R_{3}=r_{2}$ swap rows $\left[\begin{array}{cccc}1 & -1 & 1 & 8 \\ 0 & 1 & -12 & -15 \\ 0 & 5 & -3 & -18\end{array}\right]$ Where the 5 is we want 0 !
$R_{3}=r_{3}-5 \cdot r_{2}\left[\begin{array}{cccc}1 & -1 & 1 & 8 \\ 0 & 1 & -12 & -15 \\ 0-5 \cdot 0 & 5-5 \cdot 1 & -3-5 \cdot(-12) & -18-5(-15)\end{array}\right]$
$\xrightarrow{\text { simplify row } 3}\left[\begin{array}{cccc}1 & -1 & 1 & 8 \\ 0 & 1 & -12 & -15 \\ 0 & 0 & 57 & 57\end{array}\right] \xrightarrow{R_{3}=r_{3} / 57}\left[\begin{array}{cccc}1 & -1 & 1 & 8 \\ 0 & 1 & -12 & -15 \\ 0 & 0 & 1 & 1\end{array}\right]$
bottom row:
(0 0 1 1 1)
$1 z=1$
$z=1!$
second row: $\left(\begin{array}{llll}0 & 1 & -12 & -15\end{array}\right) \Leftarrow 1 y-12 z=-15$

$$
y-12(1)=-15(\text { stick in } z=1)
$$

Solution point is
($4,-3,1$)

$$
\left.\begin{array}{ll}
y-12=-15 & \text { top row: }\left(\begin{array}{ll}
1-1 & 1
\end{array}\right) \\
y=-15+12
\end{array}\right)
$$

$0 x$ (stuffed in) : $y+2 z=0$ or similar
Homework Sample:
$\left\{\begin{array}{l}x-2 y+z=8 \\ 0 x+1 y+2 z=0 \\ x+y+3 z=4\end{array} \xrightarrow[\text { coefficients }]{\text { augmented matrix }}\left[\begin{array}{cccc}1 & -2 & 1 & 8 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 3 & 4\end{array}\right] \quad\left[\begin{array}{cccc}\text { RUS } & \left.\begin{array}{cccc}\text { a } & b & c & d \\ 0 & e & f & g \\ 0 & 0 & 1 & i\end{array}\right] \\ x & y & z\end{array} \quad z=i!!\right.\right.$
$R_{3}=r_{3}-r_{1} \xrightarrow{\text { subtract from row } 3 \text { the current version of row } 1}$

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 8 \\
0 & 1 & 2 & 0 \\
1-1 & 1-(-2) & 3-1 & 4-8
\end{array}\right]=\left[\begin{array}{cccc}
1 & -2 & 1 & 8 \\
0 & 1 & 2 & 0 \\
0 & 3 & 2 & -4
\end{array}\right]
$$

$R_{3}=r_{3}-3 r_{2} \rightarrow\left[\begin{array}{cccc}1 & -2 & 1 & 8 \\ 0 & 1 & 2 & 0 \\ 0-3 \cdot 0 & 3-3 \cdot 1 & 2-3 \cdot 2 & -4-3 \cdot 0\end{array}\right]=\left[\begin{array}{cccc}1 & -2 & 1 & 8 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & -4 & -4\end{array}\right]$
$R_{3}=r_{3} /-4:\left[\begin{array}{cccc}1 & -2 & 1 & 8 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 1\end{array}\right] \quad \begin{aligned} & \text { the bottom says }\left(\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right): \\ & z=1! \\ & \text { second row: }\left(\begin{array}{llll}0 & 1 & 2 & 0\end{array}\right)\end{aligned}$

Solution point:
$1 y+2 z=0$
($3,-2,1$)
For homework, you are to

$$
y=-2
$$ show a sequence of steps very similar (not the same) to these.

1. Matrices are shown.
2. And things like
$R_{3}=r_{3}-3 r_{1}$ are shown!

$$
y+2(1)=0
$$

$$
\text { top row: }\left(\begin{array}{llll}
1 & -2 & 1 & 8
\end{array}\right)
$$

equation form: $1 x-2 y+1 z=8$
We know $y=-2$ and $z=1$, so plug in:

$$
\begin{aligned}
& x-2(-2)+1(1)=8 \\
& x+4+1=8 \\
& x+5=8 \\
& x=8-5 \\
& x=3
\end{aligned}
$$

