$$
\begin{aligned}
& \text { f (-5, } 1 \text { ) } \\
& (2,3) \quad \text { plotting points q1 homework write small in your notes } \\
& (-2,-3) \\
& (1,0) \\
& \text { (4,-4) } \\
& (0,3)
\end{aligned}
$$

> Clear All Draw:
> $(-5,1) \ldots 5$ left and 1 up
> $(2,3) \ldots 2$ right, 3 up
> $(-2,-3) \ldots 2$ left, 3 down
> $(1,0) \ldots 1$ right, 0 up
> $(4,-4) \ldots 4$ right, 4 down $(0,3)$..
> $(x, y)$ ordered pair
> going $x$ left or right, $y$ up or down..depending on whether $x / y$ is positive or negative.

$$
\begin{aligned}
& 2 x+2 y=6 \\
& x=0: 2 \cdot 0+2 y=6 \rightarrow 2 y=6 \rightarrow y=3 \\
& y=0: 2 x+2 \cdot 0=6 \rightarrow 2 x=6 \rightarrow x=3
\end{aligned}
$$

3

3

$(3,0)$
example 2 of the above: $3 x+4 y=12$
$y=0: 3 x+4 \cdot 0=12 \rightarrow 3 x=12 \rightarrow x=12 / 3 \rightarrow x=4 \xrightarrow{\text { point is }}(4,0) \Leftarrow$ mark in graph $\mathrm{x}=0: 3 \cdot 0+4 y=12 \rightarrow 4 y=12 \rightarrow y=12 / 4 \rightarrow y=3 \xrightarrow{\text { point is }}(0,3) \Leftarrow$ mark this in graph

Once the points are marked, connect with a straight line. In the homework this means that we have to mark two dots first and then the line second.

Find the equation of the line through the points $(-15,11)$ and $(10,-9)$.
$\square$ of $y-11=-\frac{4}{5}(x+15)$ or $y$
$y-y_{1}=m\left(x-x_{1}\right)$
slope $=m=\frac{y-y_{1}}{x-x_{1}} \xrightarrow{\text { rearrange }} m\left(x-x_{1}\right)=y-y_{1}$
we don't have $m$ but we can find it using $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}},\left(x_{1}=-15, y_{1}=11\right)$
slope $=\frac{-9-11}{10-(-15)}=\frac{-20}{10+15}=\frac{-20}{25}=\frac{5(-4)}{5 \cdot 5}=-\frac{4}{5}$
( $-4 / 5 \Leftarrow 5$ right, 4 down)
now plug into formula: $y-11=-\frac{4}{5}(x--15), y_{1}=11, x_{1}=-15, m=-4 / 5$

$$
y-11=-\frac{4}{5}(x+15)
$$

could use the other point: $(10,-9)$

$$
\begin{aligned}
& y--9=-\frac{4}{5}(x-10) \quad \text { replace } y_{1} \text { with }-9, x_{1} \text { with } 10 \\
& y+9=-\frac{4}{5}(x-10) \Leftarrow \text { equally acceptable form }
\end{aligned}
$$

other stuff: $y-y_{1}=m\left(x-x_{1}\right) \Leftarrow$ point slope form $w e$ have the form $y=m x+b$ ( $m$ is slope, $b=y$ intercept), slope-intercept form example : horizontal line equation through (1,2). $\quad a x+b y=c \Leftarrow$ general form of a line horizontal line means $\mathrm{m}=0$ (slope is 0 )

$$
\begin{aligned}
& y_{1}=2, x_{1}=1, m=0 \\
& y-2=0(x-1) \\
& y-2=0 \\
& y=2 \Leftarrow \text { final answer }
\end{aligned}
$$

example: making point-slope form into $y=m x+b$ form made up information:

$$
(1,2), m=-3
$$

$$
y-2=-3(x-1) \Leftarrow \text { repalce } y_{1} \text { with } 2, x_{1} \text { with } 2, m \text { with }-3
$$

$$
y-2=-3 x-3(-1) \Leftarrow \text { distribute }-3 \text { to each term on RHS }
$$

$$
y-2=-3 x+3 \quad(\text { negati ve } \cdot \text { negative }=\text { positive })
$$

$$
y-2+2=-3 x+3+2(\text { add } 2 \text { to both sides })
$$

$\approx$
$y=-3 x+5 \quad(-2+2=0$ numbers whose sum is 0$)$
numbers whose sum is $0,-2+2$, are called additive inverses. according to $y=-3 x+5$, the slope is still -3 ! the y intercept is +5 .

