Make sure your class notes and homework solutions are loaded together in your PDF. Section 3.1/Matrix Algebra:
Def: a matrix is a rectangular array of numbers.
$\left(\begin{array}{ccc}1 & 2 & 3 \\ -5 & 6 & 7\end{array}\right) \quad\left[\begin{array}{cc}-4 & 5 \\ 4 & 6\end{array}\right] \leftarrow 2$ row by 2 column matrix
example 1: in a survey of 900 people, we got this information:
200 males said federal defense spending was too high
150 males said federal spending was too low
45 males had no opinion
315 feamls said federal defenese spending was too high
125 females said defense spending was too low
65 females had no opinion
$\begin{array}{lccc}\text { tabular display: } & \text { Too High } & \text { Too Low } & \text { No Opinion } \\
\text { Male } & 200 & 150 & 45 \\
\text { Female } & 315 & 125 & 65 \\
\text { Just one possible display format. } & \\
\text { Matrix form: }\left(\begin{array}{ccc}200 & 150 & 45 \\
315 & 125 & 65\end{array}\right) \Leftarrow 2 \text { row by } 3 \text { column matrix } 2 \times 3\end{array}$
example 2(our own)
$\left[\begin{array}{cc}2 & 1\end{array}\right] \leftarrow 1$ row by 2 column matrix
$\left[\begin{array}{l}1 \\ 2\end{array}\right] \leftarrow 2$ row by 1 column matrix
$\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] \leftarrow 3$ row by 3 column matrix
2×1
$[1] \leftarrow 1$ row by 1 column, 1×1
In general, for a matrix, the dimension is $m \times n$ ($m=$ number of rows, $n=n u m b e r$ of cols!)
$\left[\begin{array}{cccc}a_{11} & a_{1,2} & a_{1,3} & a_{1,4} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4}\end{array}\right]$
$a_{2,3}=$ entry in row 2 , column 3
$a_{3,1}=$ entry in row 3 , column 1

Matrix equality: Two matrices (not matrixes) are equal if their corresponding(entries in the same position) are equal.
example 4:
$\left[\begin{array}{ll}p & q \\ 1 & 0\end{array}\right]$ $\left[\begin{array}{ll}2 & 4 \\ n & 0\end{array}\right] \quad p=2$ b/c they're both at row 1 , index 1
$q=4 \mathrm{~b} / \mathrm{c}$ they're both in row 1 , column 2
$1=n \mathrm{~b} / \mathrm{c}$ they're both in row 2 , column 1
$0=0$ for reasons above!
example 5 :
$A=\left[\begin{array}{cc}x+y & 6 \\ 2 x-3 & 2-y\end{array}\right] \quad B=\left[\begin{array}{cc}5 & 5 x+2 \\ y & x-y\end{array}\right]$
$\left.\begin{array}{ll}x+y=5 & 5 x+2=6\end{array}\right\}$ We have 4 equations but only TWO unknowns!
$2 x-3=y \quad 2-y=x-y$
solve $5 \mathrm{x}+2=6$ for $\mathrm{x}: 5 x=4 \rightarrow x=4 / 5$
solve $2-y=x-y$ for x : add y : $2=y+y=x=y+y \rightarrow 2=x$
Our system has no solution.

Contradiction

$$
\begin{gathered}
x=4 / 5 \\
x=2
\end{gathered}
$$

cannot be!
example 6: Motors, Inc. makes three models of cars: a sedan, a convertible, and an SUV.
Table 1 (given):

Month 1:
Units of Material
Units of Labor

Sedan
23
7

Convertibles 16
9
column
 header
row header \uparrow
$A=\left[\begin{array}{ccc}23 & 16 & 10 \\ 7 & 9 & 11\end{array}\right]$ dimension: 2×3 (total of 6 entries)
Month 2:

$$
B=\left(\begin{array}{ccc}
18 & 12 & 9 \\
14 & 6 & 8
\end{array}\right) \quad \begin{gathered}
18 \text { means } 18 \text { units of material for sedans! } \\
6 \text { means } 6 \text { units of labor for convertibles }
\end{gathered}
$$

$$
C=A+B=\left(\begin{array}{ccc}
23 & 16 & 10 \\
7 & 9 & 11
\end{array}\right)+\left(\begin{array}{ccc}
18 & 12 & 9 \\
14 & 6 & 8
\end{array}\right)=\left(\begin{array}{ccc}
23+18 & 16+12 & 10+9 \\
7+14 & 9+6 & 11+8
\end{array}\right)=\left(\begin{array}{lll}
41 & 28 & 19 \\
21 & 15 & 19
\end{array}\right)
$$

$$
2 \times 3
$$

$$
2 \times 3
$$

$$
2 \times 3
$$

The value 28 in the sum means 28 units of material for convertibles!
The value 21 means the total units of labor for the two months for sedans.
example 7(book): [1 $2]+\left[\begin{array}{l}1 \\ 3\end{array}\right] \Leftarrow$ can't add these $1+1$, but $2+$?

2 is in position row 1, column 2
the column matrix doesn't have a row 1 , column 2 !

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{cc}
-6 & 5
\end{array}\right] \quad \begin{array}{l}
4 \text { is in position row } 2 \text {, column } 2 \text { but } \\
\text { in }\left[\begin{array}{ll}
-6 & 5
\end{array}\right] \text { there is now row } 2 \text {, column } 2 \text { ! } \\
2 \times 2
\end{array} \quad 1 \times 2}
\end{aligned}
$$

properties of matrix addition: $A+B=B+A$ (matrix addition is commutative) $\begin{array}{r}2+3=3+2 \\ a+b=b+a\end{array}$
$A+(B+C)=(A+B)+C$ (floating parenthesis to regroup is called the "associative property of addition") based on $2+(3+4)=(2+3)+4 \quad a+(b+c)=(a+b)+c$
example 9: Zero Matrix: recall $a+0=a$ (0 is called the additive identity element)

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1+0 & 2+0 \\
4+0 & 3+0
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right] \quad A+0=A(A=\text { matrix })} \\
& 2 \times 2
\end{aligned}
$$

0 (bold zero) ..it's the zero matrix
additive inverse: $2+(-2)=0$ (2 and -2 are additive inverses)

$$
\begin{aligned}
& -3+(3)=0(3 \text { and }-3 \text { are additive inverses }) \\
& a+(-a)=0(\text { so a and }- \text { a are additive inverses b/c their sum is } 0)
\end{aligned}
$$

$$
\begin{array}{cc}
{\left[\begin{array}{ll}
1 & 2]+[-1 \\
1 \times 2
\end{array}\right.} & -2]=\left[\begin{array}{ll}
1-1 & 2-2]=\left[\begin{array}{ll}
0 & 0
\end{array}\right] \text { (row matrix) } \\
\hline
\end{array}\right]
\end{array}
$$

$$
\begin{aligned}
& \left[\begin{array}{c}
-3 \\
4
\end{array}\right]+\underbrace{3}_{\text {we add this b/c }-3+3=0,4-4=0 \text { the matrix }\left[\begin{array}{c}
3 \\
-4
\end{array}\right]} \begin{array}{c}
-3+3 \\
4-4
\end{array}]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text { is the additive inverse of }\left[\begin{array}{c}
-3 \\
4
\end{array}\right]
\end{aligned}
$$

$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]+\left[\begin{array}{ll}-1 & -2 \\ -3 & -4\end{array}\right]=-A$
A
putting this in b/c 1-1=0, 2-2=0 $3-3=0,4-4=0$
$A+(-A)=0$
A and $-A$ are additive inverses b / c their sum is the zero matrix.

Example 11: Differences of Matrices:
$\begin{array}{ll}{\left[\begin{array}{ll}1 & 2\end{array}\right]-\left[\begin{array}{l}3 \\ 4\end{array}\right]} \\ 1 \text { by2 } & 2 \times 1\end{array} \quad$ Could do $1-3=-2$, but 2-? ??
Subtraction needs to have matrices of the same size.
$\left.\begin{array}{cc}{[1} & 2\end{array}\right]-\left[\begin{array}{ll}3 & 4\end{array}\right]=\left[\begin{array}{ll}1-3 & 2-4]=\left[\begin{array}{cc}-2 & -2\end{array}\right]\end{array}\right.$
$1 \times 2 \quad 1 \times 2 \quad 1 \times 2$
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]-\left[\begin{array}{cc}4 & -3 \\ -3 & 2\end{array}\right]=\left[\begin{array}{cc}1-4 & 2-(-3) \\ 3-(-3) & 4-2\end{array}\right]=\left[\begin{array}{cc}-3 & 5 \\ 6 & 2\end{array}\right]$
$2 \times 2 \quad 2 \times 2$

$$
\begin{array}{rl}
\left(\begin{array}{cccc}
2 & 4 & 8 & -3 \\
0 & 1 & 2 & 3
\end{array}\right)-\left(\begin{array}{cccc}
-3 & 4 & 0 & 1 \\
6 & 8 & 2 & 0
\end{array}\right) & \left(\begin{array}{cccc}
2-(-3) & 4-4 & 8-0 & -3-1 \\
0-6 & 1-8 & 2-2 & 3-0
\end{array}\right) \\
2 \times 4 & 2 \times 4
\end{array} \underset{2 \times 4}{\left(\begin{array}{cccc}
5 & 0 & 8 & -4 \\
-6 & -7 & 0 & 3
\end{array}\right)} \underset{2 \times 4}{\left(\begin{array}{cc}
2 \times 4
\end{array}\right.}
$$

