Math 111 Notes 9/18/2023. Make sure your class notes are loaded with your homework PDF. Good notes are notes that, when reviewed two YEARS later, still make perfect sense. 1.6 in book:
$3 x^{4}=48 x^{2}$
do not divide by x b/c $\mathrm{x}=0$ could be a solution.
We can divide by $3 \mathrm{~b} / \mathrm{c}$ it's not 0 .
$\frac{3 x^{4}}{3}=\frac{48 x^{2}}{3}$
$x^{4}=16 x^{2}$
$x^{4}-16 x^{2}=0$
factor x^{2} out: $x^{2}\left(x^{2}-16\right)=0$
$x^{2}-16$ is a difference of two squares: $x^{2}\left(x^{2}-4^{2}\right)=0$
apply $x^{2}-y^{2}=(x-y)(x+y)$

$$
\begin{aligned}
& x^{2}(x-4)(x+4)=0 \Leftarrow a \cdot b \cdot c=0, a=x^{2}, b=x-4, c=x+4 \\
& x^{2} \Leftarrow \text { factor, } x-4 \text { is a factor, } x+4 \text { is a factor }
\end{aligned}
$$

Since only multiplication is left, set each factor to 0 : $x^{2}=0 \rightarrow \sqrt{x^{2}}= \pm \sqrt{0} \rightarrow x=0$

$$
\begin{aligned}
& x-4=0 \xrightarrow{\text { add } 4} x=4 \\
& x+4=0 \xrightarrow[\text { subtract } 4]{ } x=-4
\end{aligned}
$$

example 2:
$x^{3}-3 x^{2}+3 x-9=0$
we have all different exponents what's the GCF in x^{3} and $-3 x^{2}: x^{2}$ what's the GCF between $3 x$ and -9 ?: 3
reminder: $x^{2}\left(\frac{x^{3}}{x^{2}}-\frac{3 x^{2}}{x^{2}}\right)=x^{2}(x-3)$

$$
(x \cdot x \cdot x-3 \cdot x \cdot x)=x \cdot x(x-3)=x^{2}(x-3)
$$

group with these observations in mind: $\left(x^{3}-3 x^{2}\right)+(3 x-9)=0$
parenthesis around terms with common factors, and a + (not a minus) in the middle
factor from each set of parenthesis: $x^{2}(x-3)+3(x-3)=0 \quad 3\left(\frac{3 x}{3}-\frac{9}{3}\right)$
what's the GCF now? $(x-3):\left(x^{2}+3\right)(x-3)=0$ entire $(x-3)$ is treated like a single unit.
set each factor equal to 0 : $a \cdot b=0, a=0 o r b=0$
$x^{2}+3=0$
$x^{2}=-3$
$\sqrt{x^{2}}= \pm \sqrt{-3}$
$x= \pm i \sqrt{3}$
$x= \pm \sqrt{3} i$
example 4 in book of Mathmagic:
$\sqrt{2 x+7}-x=2$
square both sides:...LHS will be very hard to handle
add x : $\sqrt{2 x+7}=2+x \Leftarrow \mathrm{~b} / \mathrm{c}$ squaring $(\sqrt{\ldots})^{2}=\ldots .$.
$(\sqrt{2 x+7})^{2}=(2+x)^{2} \Leftarrow$ both sides...maintain balance
$2 x+7=2^{2}+2 \cdot 2 \cdot x+x^{2} \quad$ FOIL RHS
$2 x+7=4+4 x+x^{2} \quad$ multiply out
make $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ form b / c we have x^{2} present
$2 x-2 x+7-7=4-7+4 x-2 x+x^{2}$
$0=-3+2 x+x^{2}$
$0=x^{2}+2 x-3$ (move terms..not shift between sides..so don't change sign)
$0=()()$ two values that multiply to -3 and add to 2 :
$0=(x-1)(x+3)($ works b/c 3(-1)=-3 and $-1+3=2)$
$0=x-1 \quad 0=x+3$
$1=x \quad-3=x$
check $x=-3$: $\sqrt{2(-3)+7}-(-3)=? 2 \quad$ So $x=-3$ is not a solution. Why does it exsist then?
$\sqrt{-6+7}+3=? 2$
$\sqrt{1}+3=? 2$
$1+3=? 2$
$4=? 2 \mathrm{NO}$!
$x=\sqrt{x+1}$
square: $x^{2}=x+1$

B / c squaring make the equation into a shape like a parabola and this introduces one extra solution.
simple example:

Squaring makes an extra solution appear that doesn't relate to the original equation.
example 6: absolute value...to make 3 , you can do $|3|=3$ or $|-3|=3$
$|x-2|=3$

$$
\begin{array}{cc}
\text { either } x-2=3 \\
x=3+2 & \text { or } \\
x=5 & x=-3+2 \\
x=-2
\end{array}
$$

example 6 (in book)
$\frac{2}{x}=\frac{3}{x-2}-1 \Leftarrow \mathrm{~b} / \mathrm{c}$ we have fractions, it's called a rational equation (ratio) (fractional eqs) clear the fractions away. How? multiply by the LCM!
$x(x-2)$
$x(x-2) \cdot \frac{2}{x}=x(x-2) \cdot \frac{3}{x-2}-1(x)(x-2)$ (multiply every term by $x(x-2)$)
$2(x-2)=3 x-x(x-2) \quad$ cancel $x, x-2$
$2 x-4=3 x-x^{2}+2 x$ (distribute 2 and $-x$)
$2 x-4=5 x-x^{2} \quad(3 x+2 x=5 x)$
now make the form $a x^{2}+b x+c=0$
b/c we have $-x^{2}$, and -1 on x^{2} makes things complicated when factoring, move $-x^{2}$ to RHS $2 x-5 x-4+x^{2}=5 x-5 x-x^{2}+x^{2}$
$x^{2}-3 x-4=0$
$(x-4)(x+1)=0 \mathrm{~b} / \mathrm{c}(-4)(1)=-4,-4+1=-3$
$x=4 \quad x=-1$
Since neither x is 0 or 2 , both work.

In this case:
$\frac{2}{x}=\frac{3}{x-2}-1 \Leftarrow$ rational equation
$x \neq 0$ or $x \neq 2$ or we'd have division by 0 , which is not allowed.

Example 9: Compound Interest
Formula: $A=P(1+r / n)^{n t}, A=$ future money, $\mathrm{P}=$ money being invested right now $r=r a t e$ of interest (convert to decimal form), $n=n u m b e r ~ o f ~ t i m e s ~ w e ~ c o m p o u n d ~$ compounding means calculating interest and adding to the original amount, $\mathrm{t}=$ time over which we hold our investment
Imagine we invest $\mathrm{P}=1000$ at a rate of $4 \%(.04)$ for 2 years $(\mathrm{t}=2)$ and we compound 4 times per year. ($n=4$).
$A=$ how much money we will have $=1000\left(1+\frac{0.04}{4}\right)^{4 \cdot 2}=1000(1+0.01)^{8}$
Effective rate at the end of each period is .01 or 1% and we compound a total of 8 times.
Interest=free money
$=1082.86-1000=82.86$ units of currency.

$$
\begin{aligned}
& =1000(1.01)^{8} \\
& =1082.86 \text { units of currency. }
\end{aligned}
$$

$n=1$ (annual=once per year)
$n=2$ (semi-annual=twice per year)

$$
n=365 \text { (daily=365 times per year) }
$$

$\mathrm{n}=4$ (quarterly=4 times per year)
$n=12$ (monthly=12 times per year)

Example 9:
Imagine when you were born, your grandparents deposted $\$ 5000$ in a long-term investment in which the interest was compounded quarterly.

Today, on your 25th birthday, the value of your investment is $25,062.59$.
What is the annual interest rate for this investment?
$P=5000$ (back 25 years ago we invested 5000)
Our $A=25062.59$ (money present right now)
$n=$ quarterly=n, $\mathrm{t}=25$ (25 years since year 0 of our birth)
$r=$? replace what we can:

$$
\begin{aligned}
& 25062.59=5000(1+r / 4)^{4 \cdot 25} \Leftarrow \text { replace as much as possible } \\
& \frac{25062.59}{5000}=\frac{5000}{5000}\left(1+\frac{r}{4}\right)^{100} \quad \text { divide by } 5000,4 \cdot 25=100 \text { in top } \\
& 5.0125=\left(1+\frac{r}{4}\right)^{100} \\
& \sqrt[100]{5.0125}=\sqrt[100]{\left(1+\frac{r}{4}\right)^{100}} \\
& \text { What's the opposite of raising to the 100th? } \\
& \text { so take the 100th root of both sides } \\
& \sqrt[100]{5.0125}=1+\frac{r}{4} \quad \text { on RHS, } 100 \text { index of radical cancel with } 100 \text { in exponent } \\
& \sqrt[100]{5.0125}-1=\frac{r}{4} \quad \text { subtract } 1 \\
& 4\left(\sqrt[100]{5.0125^{1}}-1\right)=r \text { (multiply by } 4 \text { on both sides) } \\
& \text { something multiplied by itself } 100 \text { times is } 5.0125 \\
& 4\left(5.0125^{1 / 100}-1\right)=r \quad \sqrt[2]{x^{1}}=x^{1 / 2}, \quad \sqrt[3]{x^{1}}=x^{1 / 3} \\
& r=0.065 \text { or in percent form } r=6.5 \%
\end{aligned}
$$

