The Method of Least Squares:
Page 163:
Example 1: Finding the transpose of a matrix:
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \xrightarrow{\begin{array}{c}A^{\top} \text { (read as } A \text { transpose) } \\ \text { flip rows and columns }\end{array}}\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$
$B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 2 & 3\end{array}\right] \xrightarrow{A^{\top} \text { (flip rows and columns) }}\left(\begin{array}{lll}1 & 0 & 2 \\ 1 & 1 & 3\end{array}\right)$

$y=m x+b$...we need m and b !
how to find m and b so all the points play some role?
$C=\left[\begin{array}{lll}1 & 0 & -1\end{array}\right] \xrightarrow{A^{\top} \text { (flip this row into a column) }}\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$
$e_{1}=$ error between y_{1} and y coord on line.
$e_{2}=$ error between y_{2} and y coord on line $e_{3}=$ error between y_{3} and y coord on line $\mathrm{e}_{4}=$ error between y_{4} and y coord on line
y_{i} for $\mathrm{i}=1$ to 4 is the observed value

$\xrightarrow{ }$| $x_{1} x_{2}$ | |
| :--- | :--- |
| $e_{1}=y_{1}-\left(m x_{1}+b\right)$ | $e_{4}=y_{4}-\left(m x_{4}+b\right)$ |
| $e_{2}=y_{2}-\left(m x_{2}+b\right)$ | |
| $e_{3}=y_{3}-\left(m x_{3}+b\right)$ | |

Since $e_{3}=y_{3}-\left(m x_{3}+b\right) \rightarrow y_{3}=e_{3}+\left(m x_{3}+b\right)=$ error + estimate $=o b s e r v e d ~ v a l u e ~$ We want the sum $e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+e_{4}^{2}$ to be as small as possible! This is just based on experience and some theory we're not going to cover here.
Method of Least Squares: to make $e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+e_{4}^{2}$ as small as possible, we use the following process: $y=m x+b$ and we have to find m and b and make sure all the points have an influence on the values of m and b .
Assume for simplicity: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{4}, y_{4}\right)$
$A^{T} A X=A^{T} Y$ (why....not explaining here the reason for this formula)
$A=\left[\begin{array}{cc}x_{1} & 1 \\ x_{2} & 1 \\ x_{3} & 1 \\ x_{4} & 1\end{array}\right] \quad X=\left[\begin{array}{c}m \\ b\end{array}\right] \quad Y=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right] \Leftarrow$ each entry here is known!
x 's are known

Example 1: Use the method of least squares to find the line of best fit for $(4,9),(5,8),(9,6)$ and $(12,3)$

$$
A=\left[\begin{array}{cc}
4 & 1 \\
5 & 1 \\
9 & 1 \\
12 & 1
\end{array}\right] \quad X=\left[\begin{array}{c}
m \\
b
\end{array}\right] \quad Y=\left[\begin{array}{l}
9 \\
8 \\
6 \\
3
\end{array}\right] \quad \begin{aligned}
& \text { Formula: } \\
& A^{T} A X=A^{T} Y
\end{aligned}
$$

$\left(\begin{array}{cccc}4 & 5 & 9 & 12 \\ 1 & 1 & 1 & 1\end{array}\right)\left[\begin{array}{cc}4 & 1 \\ 5 & 1 \\ 9 & 1 \\ 12 & 1\end{array}\right]\left[\begin{array}{c}m \\ b\end{array}\right]=\left(\begin{array}{cccc}4 & 5 & 9 & 12 \\ 1 & 1 & 1 & 1 \\ 2 \times 4\end{array}\right)\left[\begin{array}{l}9 \\ 8 \\ 6 \\ 3\end{array}\right]$ (no cancelling matrices)

$$
2 \times 2
$$

2×2
$\left[\begin{array}{cc}16+25+81+144 & 4+5+9+12 \\ 4+5+9+12 & 1+1+1+1\end{array}\right]\left[\begin{array}{c}m \\ b\end{array}\right]=\left[\begin{array}{c}4 \cdot 9+5 \cdot 8+9 \cdot 6+12 \cdot 3 \\ 9+8+6+3\end{array}\right]$
$\left[\begin{array}{cc}266 & 30 \\ 30 & 4\end{array}\right]\left[\begin{array}{c}m \\ b\end{array}\right]=\left[\begin{array}{c}166 \\ 26\end{array}\right]$
set entries and solve the system for m and b :
$266 m+30 b=166$
$2 \times 2 \quad 2 \times 1$
$30 m+4 b=26$
$\left[\begin{array}{c}266 m+30 b \\ 30 m+4 b\end{array}\right]=\left[\begin{array}{c}166 \\ 26\end{array}\right]$
doing some algebra........compute....
$m=-29 / 41$ and $\mathrm{b}=484 / 41$
line of best fit is $y=\frac{-29}{41} x+\frac{484}{41}$
"I can't do it "cancer of the mind!
"It's too hard". cancel of the mind!!
"You reap what you sow. "
Let's say we want to use this model: $x=5$ (notice $x=5$ is one of the values in the list) $y=\frac{-29}{41} \cdot 5+\frac{484}{41}=8.27$ (real value=observed value was $8 .$. error= $8.27-8=0.27$)
$\mathrm{x}=6$ is not part of the x coordinates given...
estimate: $y=\frac{-29}{41} \cdot 6+\frac{484}{41}=7.56$ (estimated value..we don't know the real one)
Say we have the points $(0,1),(1,3),(2,2)$ Find the line of best fit.
$A^{T} A X=A^{T} Y$

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right] \quad X=\left[\begin{array}{c}
m \\
b
\end{array}\right] \quad Y=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]
$$

$$
\begin{array}{r}
\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right)\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]=\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right)\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] \\
2 \times 3 \quad 3 \times 2 \quad 3 \times 3
\end{array}
$$

$$
\left[\begin{array}{ll}
0 \cdot 0+1 \cdot 1+2 \cdot 2 & 0 \cdot 1+1 \cdot 1+2 \cdot 1 \\
1 \cdot 0+1 \cdot 1+1 \cdot 2 & 1 \cdot 1+1 \cdot 1+1 \cdot 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]=\left[\begin{array}{c}
0 \cdot 1+1 \cdot 3+2 \cdot 2 \\
1 \cdot 1+1 \cdot 3+1 \cdot 2
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
5 & 3 \\
3 & 3
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]=\left[\begin{array}{l}
7 \\
6
\end{array}\right] \quad 5 m+3 b=7
$$

$$
\left.\left[\begin{array}{l}
5 m+3 b \\
3 m+3 b
\end{array}\right]=\left[\begin{array}{l}
7 \\
6
\end{array}\right] \quad \begin{array}{l}
3 m+3 b=6 \xrightarrow{\text { divide by } 3} m+b=2 \text { subtra } \\
\text { plug into top equation } \\
\end{array}\right]+3(2-m)=7 \text { s }
$$

Line of Best Fit:
$y=\frac{1}{2} x+\frac{3}{2}$
$\xrightarrow{\text { solve for } m} 5 m+6-3 m=7$
$5 m-3 m=7-6$

$$
2 m=1
$$

our original points: $(0,1),(1,3),(2,2)$ estimate y when $x=1 / 2$:

$$
b=2-m
$$

$$
b=2-1 / 2
$$

$$
b=4 / 2-1 / 2
$$

$$
b=3 / 2
$$

$y=\frac{1}{2}\left(\frac{1}{2}\right)+\frac{3}{2}=\frac{1}{4}+\frac{3}{2}=\frac{1}{4}+\frac{6}{4}=\frac{7}{4} \Leftarrow$ estimated value of y !

