Make sure you load your class notes and homeworks solutions as a PDF. Remember you can use an app like FastScanner or CamScanner to make images, and then export the images as a single PDF. Images don't show up sometimes in the box.
On with section 3.2:
Scalar Multiplication of Matrices
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] 2$ by 2 matrix, $4 A=4\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \xrightarrow{\text { distribute the } 4 \text { to each entry }}\left[\begin{array}{cc}4 \cdot 1 & 4 \cdot 2 \\ 4 \cdot 3 & 4 \cdot 4\end{array}\right]=\left[\begin{array}{cc}4 & 8 \\ 12 & 16\end{array}\right]$
The red 4 is the scalar. A scalar is a real number.
ex2 $: \frac{1}{3}\left(\begin{array}{ccc}6 & 9 & 12 \\ 8 & 4 & -9\end{array}\right) \xrightarrow{\text { distribute the } 1 / 3}\left(\begin{array}{ccc}\frac{1}{3} \cdot 6 & \frac{1}{3} \cdot 9 & \frac{1}{3} \cdot 12 \\ \frac{1}{3} \cdot 8 & \frac{1}{3} \cdot 4 & \frac{1}{3}(-9)\end{array}\right)=\left(\begin{array}{ccc}2 & 3 & 4 \\ 8 / 3 & 4 / 3 & -3\end{array}\right)$
scalar 2×3

$$
2 \times 3 \quad 2 \times 3
$$

ex3: $2\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]-3\left[\begin{array}{cc}-1 & 2 \\ 3 & 5\end{array}\right]$
think about it: $2(x-3)-3(x+5)$
$\xrightarrow{\text { distribute the } 2 \text { and }-3 \text { first }}\left[\begin{array}{cc}2 \cdot 1 & 2 \cdot 2 \\ 2 \cdot 3 & 2 \cdot 4\end{array}\right]+\left[\begin{array}{cc}(-3)(-1) & (-3)(2) \\ -3(3) & -3(5)\end{array}\right] \leftarrow$ carry the - with the 3 , leave +
$\xrightarrow{\text { multiply out }}\left[\begin{array}{ll}2 & 4 \\ 6 & 8\end{array}\right]+\left[\begin{array}{cc}3 & -6 \\ -9 & -15\end{array}\right]$
$\xrightarrow[\text { each is } 2 \text { by } 2]{\text { add }}\left[\begin{array}{cc}2+3 & 4-6 \\ 6-9 & 8-15\end{array}\right] \xrightarrow{\text { finalize the additions }}\left[\begin{array}{cc}5 & -2 \\ -3 & -7\end{array}\right]$ final result
The action of multiplying by a scalar and adding /subtracting is called forming a linear combination of matrices.

Ex4: To get good at math, just do a lot of exercises.

$$
\begin{aligned}
5\left(2\left[\begin{array}{cc}
4 & -2 \\
3 & 4
\end{array}\right]\right) \xrightarrow{\text { distribute the } 2} & 5\left[\begin{array}{cc}
2 \cdot 4 & 2(-2) \\
2 \cdot 3 & 2 \cdot 4
\end{array}\right]=5\left[\begin{array}{cc}
8 & -4 \\
6 & 8
\end{array}\right]=\left[\begin{array}{cc}
5 \cdot 8 & 5(-4) \\
5 \cdot 6 & 5 \cdot 8
\end{array}\right] \\
& =\left[\begin{array}{cc}
40 & -20 \\
30 & 40
\end{array}\right] \Leftarrow \text { First distribute } 2 \text { and second distribute } 5 .
\end{aligned}
$$

What if we first multiply 5 by 2 to make 10 and distribute 10 ?
$5\left(2\left[\begin{array}{cc}4 & -2 \\ 3 & 4\end{array}\right]\right) \xrightarrow{\text { multiply } 5 \text { by } 2} 10\left[\begin{array}{cc}4 & -2 \\ 3 & 4\end{array}\right] \xrightarrow{\text { distribute } 10}\left[\begin{array}{cc}10 \cdot 4 & 10(-2) \\ 10 \cdot 3 & 10 \cdot 4\end{array}\right]=\left[\begin{array}{cc}40 & -20 \\ 30 & 40\end{array}\right]$
in general: $a\left(b\left[\begin{array}{ll}c & d \\ e & f\end{array}\right]\right) \xrightarrow{\text { do ab first }} a b\left[\begin{array}{ll}c & d \\ e & f\end{array}\right] \xrightarrow{\text { distribute } a b}\left[\begin{array}{ll}a b c & a b d \\ a b e & a b f\end{array}\right]$

Matrix multiplication /Section 3.2:
ex 1:[1\$
prices
5 apples $\cdot \frac{1 \$}{\text { apple }}+6$ pineapptes $\cdot \frac{5 \$}{\text { pineapple }}$
$5 \cdot 1 \$+6 \cdot 5 \$=5 \$+30 \$=35 \$$ total money spent
number of items
$\left[\begin{array}{ll}1 & 5\end{array}\right] \cdot\left[\begin{array}{l}5 \\ 6\end{array}\right]=1 \cdot 5+5 \cdot 6=5+30=35$ (same value as above)
in general: $\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]\left[\begin{array}{c}b_{2}\end{array}\right]=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}$ (dot product) \ldots_{n}
$\left.\mathrm{e} \times 2:\left[\begin{array}{ccc}1 & 2 & 3\end{array}\right]\left[\begin{array}{c}-1 \\ 2 \\ 1 \times 3\end{array}\right]=\begin{array}{c}\text { dot product } \\ 4\end{array}\right]=1(-1)+2(2)+3(4)=-1+4+12=3+12=15 \Leftarrow$ scalar result
$[15]=15(1$ by 1$)$
3×1 Number of columns in first matches the number of rows in second.
ex3: $\left[\begin{array}{ll}1 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=1 \cdot 1+2 \cdot 2+? 3$ (can't multiply a 1×2 with a 3×1, 2 is not $3!$!)
ex 4: $\left[\begin{array}{cc}1 & 2 \\ \hline & 4 \\ \hline\end{array}\right] \cdot\left[\begin{array}{c|c}4 & 5 \\ -2 & 3\end{array}\right] \xrightarrow{\text { multiply rows by columns again }}\left[\begin{array}{cc}1(4)+2(-2) & 1(5)+2(3) \\ 3(4)+4(-2) & 3(5)+4(3)\end{array}\right]$
$2 \times \underbrace{2 \quad 2 \times 2}$
these match so meaningful operation
entry 1: dot product of row 1 , column 1 entry 2 : dot product of row 1 , column 2 entry 3 : dot product of row 2 , column 2 entry 4: dot product of row 2 , column 2

4

$$
2 \times 2
$$

ex 3 /page 122/123 (from book)
$\left(\begin{array}{ccc}2 & 4 & -1 \\ 5 & 8 & 0\end{array}\right)\left[\begin{array}{cccc}2 & 5 & 1 & 4 \\ 4 & 8 & 0 & 6 \\ -3 & 1 & -2 & -1\end{array}\right]$
2×3

$$
3 \times 4
$$

$\left(2(2)+4(4)^{1}-1(-3) 2(5)+4(8)-1(1) \quad 2(1)+4(0)^{2}-1(-2) \quad 2(4)+4(6)-1(-1)\right)$
$5(2)+8(4)+0(-3) \quad 5(5)+8(8)+0(1) \quad 5(1)+8(0)+0(-2) \quad 5(4)+8(6)+0(-1))$
$=\left(\begin{array}{cccc}4+16+3 & 10+32-1 & 2+2 & 8+24+1 \\ 10+32 & 25+64 & 5 & 20+48\end{array}\right) \xrightarrow{\text { finalize the additions }}\left(\begin{array}{cccc}23 & 41 & 4 & 33 \\ 42 & 89 & 5 & 68\end{array}\right) \Leftarrow$ result

example 4(our own)

$\left[\begin{array}{cccc}1 & 2\end{array}\right]\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 \cdot 1+2 \cdot 4 & 1 \cdot 2+2 \cdot 5 & 1 \cdot 3+2 \cdot 6\end{array}\right.$
$1 \times 2 \quad 2 \times 3 \quad 1 \times 3$

$$
\begin{aligned}
&=\left[\begin{array}{ccc}
9 & 12 & 15
\end{array}\right] \\
& 1 \times 3 \text { matrix }!
\end{aligned}
$$

$2=2$,so compat. for multiplication

