Make sure your class notes and homework solutions are loaded in your PDF. It's best to write small so there are no issues with big file sizes.
Section 3.2:
1 is called the multiplicative identity b/c a $1=\mathrm{a}$. So multiplying by 1 doesn't change the value of
ex1: $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 \cdot 1+2 \cdot 0 & 1 \cdot 0+2 \cdot 1 \\ 3 \cdot 1+4 \cdot 0 & 3 \cdot 0+4 \cdot 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \Leftarrow$ same matrix comes out

$$
2 \times 2 \quad 2 \times 2
$$

We call $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ the identity matrix $=I_{2}$
ex2: $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{clc}1 \cdot 1+2 \cdot 0+3 \cdot 0 & 1 \cdot 0+2 \cdot 1+3 \cdot 0 & 3 \cdot 1 \\ 4 \cdot 1+5 \cdot 0+6 \cdot 0 & 4 \cdot 0+5 \cdot 1+6 \cdot 0 & 4 \cdot 0+5 \cdot 0+6 \cdot 1 \\ 7 \cdot 1+8 \cdot 0+9 \cdot 0 & 7 \cdot 0+8 \cdot 1+9 \cdot 0 & 7 \cdot 0+8 \cdot 0+9 \cdot 1\end{array}\right]$
$3 \times 3 \quad 3 \times 3$
$=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right] \Leftarrow$ We have the same as the original matrix output!
We call $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ the identity matrix for 3 by 3 matrices. I_{3}

Example 10/Page 129:
The price per share for Wal-Mart (WMT), Target(TGT) and Costco(Cost) common stock at the close of trading on November 1st of 2007 and 2008 and 2009 are shown in the matrix A.

For 2007: we have three prices. For 2008, we again have three prices. For 2009, we again have three prices.

$$
\begin{aligned}
& \text { WMT TGT COST } \\
& 3 \times 3 \\
& \text { A } \\
& \text { Kathleen and Shannon have each kept } \\
& \text { constant numbers of shares of each. } \\
& \text { Kath . } \\
& \text { Sha nnon } \\
& A B=\left[\begin{array}{lll}
42.16 & 56.58 & 63.17 \\
54.54 & 39.24 & 56.03 \\
50.03 & 49.17 & 57.75
\end{array}\right]\left[\begin{array}{cc}
150 & 125 \\
100 & 75 \\
50 & 100
\end{array}\right]=\left[\begin{array}{cc}
42.16 \cdot 150+56.58 \cdot 100+63.17 \cdot 50 & 42.16 \cdot 125+56.58 \cdot 75+63.17 \cdot 100 \\
54.54 \cdot 150+39.24 \cdot 100+56.03 \cdot 50 & 54.54 \cdot 125+39.24 \cdot 75+56.03 \cdot 100 \\
50.03 \cdot 150+49.17 \cdot 100+57.75 \cdot 50 & 50.03 \cdot 125+49.17 \cdot 75+57.75 \cdot 100
\end{array}\right]
\end{aligned}
$$

Focus on (for no reason) $\$ 15,830.50$: this is the total investment value for Shannon in 2007.

Example 11/Page 130 :
$\left[\begin{array}{ccc} & \text { JJC } & \text { CSU } \\ \text { Margareta } & 12 & 3 \\ \text { Emilio } & 9 & 6\end{array}\right]$
credit hours at Chicago State and Joliet Junior College
$A=\left[\begin{array}{cc}12 & 3 \\ 9 & 6\end{array}\right]$
2by2
$\left[\begin{array}{cc} & \text { cost per credit hour } \\ \text { JJC } & 73 \\ \text { CSU } & 189\end{array}\right]$
cost per credit hour for each university!

$$
B=\left[\begin{array}{c}
73 \\
189
\end{array}\right]
$$

$$
2 \times 1
$$

inside numbers are same, so we can multiply. Result will be 2 by 1 according to the outside numbers.

$$
A B=\left[\begin{array}{cc}
12 & 3 \\
9 & 6
\end{array}\right]\left[\begin{array}{c}
73 \\
189
\end{array}\right]=\left[\begin{array}{c}
12 \cdot 73+3 \cdot 189 \\
9 \cdot 73+6 \cdot 189
\end{array}\right]=\left[\begin{array}{l}
1443 \\
1791
\end{array}\right]
$$

The 1443 is Margareta's cost to take her 15 credit hours.
The 1791 is Emilio's cost to take his 15 credit hours.
Question 1 Homework:
Table:
A brass maker makes three different types of wholesale brass blocks from copper and zinc according to the following table:

Brass Blends

Co pper	65%	60%	95%	
Zinc	35%	40%	5%	
	100%	100%	100%	not part of matrix

(a)Make a 2 by3 matrix B that contains the blending information in decimal form:

$$
B=\left(\begin{array}{lll}
0.65 & 0.60 & 0.95 \\
0.35 & 0.40 & 0.05
\end{array}\right) \quad 2 \times 3
$$

(b) Plant 1 needs 8 High Brass, 3 Muntz Metal and 26 Gilding metal(in 1000's of Ibs) Plan 2 needs 10 High Brass, 5 Muntz Metal, 32 Gilding metal ($32=32,000 \mathrm{lbs}$ of Gilding M)

So we need a 3 by 2 so rows and columns match for multiplication: (We don't want 2 by 3)
$\left[\begin{array}{cc}8 & 10 \\ 3 & 5 \\ 26 & 32\end{array}\right]$
PI. 1 PI. 2
3×2
(c) Find the amtrix product to find each location's need for each type of metal:

$$
\left[\begin{array}{ll}
0.65 \cdot 8+0.60 \cdot 3+0.95 \cdot 26 & 0.65 \cdot 10+0.60 \cdot 3+0.95 \cdot 26 \\
0.35 \cdot 8+0.40 \cdot 3+0.95 \cdot 26 & 0.35 \cdot 10+0.40 \cdot 5+0.05 \cdot 32
\end{array}\right]
$$

each entry represents PL1 PL2 the demand

Total cost of Plant 1 is : 3.26-31.7•1000 $+0.96 \cdot 5.3 \cdot 1000=\$ 108,430.00$
Total cost of Plant 2 is: $3.26 \cdot 39.9 \cdot 1000+0.96 \cdot 7.1 \cdot 1000=\$ 136,890.00$

