Make sure your class notes and homework solutions are loaded in your PDF. It's best to write small so there are no issues with big file sizes. Section 3.2:

1 is called the multiplicative identity b/c $a \cdot 1=a$. So multiplying by 1 doesn't change the value of a ex1: $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 0 & 1 \cdot 0 + 2 \cdot 1 \\ 3 \cdot 1 + 4 \cdot 0 & 3 \cdot 0 + 4 \cdot 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \Leftarrow$ same matrix comes out 2×2 2×2 We call $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ the identity matrix = I_2 $ex2: \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 & 1 \cdot 0 + 2 \cdot 1 + 3 \cdot 0 & 3 \cdot 1 \\ 4 \cdot 1 + 5 \cdot 0 + 6 \cdot 0 & 4 \cdot 0 + 5 \cdot 1 + 6 \cdot 0 & 4 \cdot 0 + 5 \cdot 0 + 6 \cdot 1 \\ 7 \cdot 1 + 8 \cdot 0 + 9 \cdot 0 & 7 \cdot 0 + 8 \cdot 1 + 9 \cdot 0 & 7 \cdot 0 + 8 \cdot 0 + 9 \cdot 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \Leftarrow$ We have the same as the original matrix output! **3**×3 3×3 We call $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ the identity matrix for 3 by 3 matrices. I_3

Example 10/Page 129:

The price per share for Wal-Mart (WMT), Target(TGT) and Costco(Cost) common stock at the close of trading on November 1st of 2007 and 2008 and 2009 are shown in the matrix A.

For 2007: we have three prices. For 2008, we again have three prices. For 2009, we again have three prices.

	WMT		TGT	COST		Kathleen and Shannon have each kept					
2007 2008 2009	7 [42 54 50	2.16 5 .54 3 0.03 4 3	56.58 39.24 49.17 × 3	63.17 56.03 57.75 <i>A</i>			WMT TGT COST	Kath	150 150 100 50	Shares Sha 125 75 100	B B
$AB = \begin{bmatrix} 42.16 \\ 54.54 \\ 50.03 \end{bmatrix}$ <i>Wal</i>	56.58 39.24 49.17 Tar	63.17 56.03 57.75 Cos	[] 150 100 50 <i>K</i>	125 75 100 = S	42.16 · 150 54.54 · 150 50.03 · 150 2007 2008 2009	0+56.58·1 0+39.24·1 0+49.17·1 \$15, \$14, 9 \$14, 9 \$15, 3	00+63.17 00+56.03 00+57.75 140.50 906.50 309.00 <i>K</i>	50 42.16 50 54.54 50 50.03 \$15,83 \$15,36 \$15,71	3 × 125 + 56. 125 + 39. 125 + 49. 30.50 3.50 6.50 5	2 58·75+6 24·75+5 17·75+5	63.17 · 100 66.03 · 100 67.75 · 100

Focus on (for no reason) \$15, 830.50 : this is the total investment value for Shannon in 2007.

Example 11/	Page	130:	-	<i>cost</i> per credit hour
	JJC	CSU	JJC	73
Margareta	12	3	CSU	189
Emilio	9	6	-	

credit hours at Chicago State and Joliet Junior College

cost per credit hour for each university!

and Joliet Junior College

$$A = \begin{bmatrix} 12 & 3 \\ 9 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 73 \\ 189 \end{bmatrix}$$

$$2 \times 1$$
inside numbers are same,
so we can multiply. Result will be
2 by 1 according to the outside numbers.

$$AB = \begin{bmatrix} 12 & 3 \\ 9 & 6 \end{bmatrix} \begin{bmatrix} 73 \\ 189 \end{bmatrix} = \begin{bmatrix} 12 \cdot 73 + 3 \cdot 189 \\ 9 \cdot 73 + 6 \cdot 189 \end{bmatrix} = \begin{bmatrix} 1443 \\ 1791 \end{bmatrix}$$

The 1443 is Margareta's cost to take her 15 credit hours. The 1791*is* Emilio's cost to take his 15 credit hours.

Question 1 Homework:

Table:

A brass maker makes three different types of wholesale brass blocks from copper and zinc according to the following table:

	Brass	Blends		
	High Brass	Muntz Metal	Gilding N	Metal
Co pper	65%	60%	95%	
Zinc	35%	40%	5%	
	100%	100%	100%	not part of matrix

(a)Make a 2 by3 matrix B that contains the blending information in decimal form:

$$B = \left(\begin{array}{ccc} 0.65 & 0.60 & 0.95 \\ 0.35 & 0.40 & 0.05 \end{array}\right) \quad 2 \times 3$$

(b) Plant 1 needs 8 High Brass, 3 Muntz Metal and 26 Gilding metal(in 1000's of lbs) Plan 2 needs 10 High Brass, 5 Muntz Metal, 32 Gilding metal (32=32,000 lbs of Gilding M)

So we need a 3 by 2 so rows and columns match for multiplication: (We don't want 2 by 3)

ſ	8	10	(c) Find the amtrix product to find each location's need for each type of
	3	5	metal:
	26	32	$\begin{bmatrix} 0.65 \cdot 8 + 0.60 \cdot 3 + 0.95 \cdot 26 & 0.65 \cdot 10 + 0.60 \cdot 3 + 0.95 \cdot 26 \end{bmatrix}$
Ρ	I. 1	PI.2	3×2 [0.35·8+0.40·3+0.95·26 0.35·10+0.40·5+0.05·32]

copper = zinc	31.7 5.3	39.9 7.1	(d) Zinc is \$.96 per pound and the price of copper is \$3.26 per pound.
each entry represents	PL1	PL2	

the demand

Total cost of Plant 1 is : $3.26 \cdot 31.7 \cdot 1000 + 0.96 \cdot 5.3 \cdot 1000 = $108, 430.00$

Total cost of Plant 2 is: $3.26 \cdot 39.9 \cdot 1000 + 0.96 \cdot 7.1 \cdot 1000 = $136, 890.00$