Math 111 Notes 11/15/2023. Please take detailed notes and put away all other distractions.
Remember next week class will be on zoom. I will send the link out via MyOpenMath.
Applications of Exponential Functions:
Simplest Interest=I=Prt, $P=$ principal, $r=r a t e, t=$ time
If we set $t=1$ for the sake of simplicty, we get $I=P r$
a mount at the end of 1 year: $A=P+\operatorname{Pr}($ principal + interest $)$

$$
A=P(1+r) \Leftarrow \text { factor } P \text { out } \quad P=1 \cdot P
$$

We invest this amount, $P(1+r)$ into the next year:
amount at end of year 2: $A=P(1+r) \cdot 1+P(1+r) r$
notice $P(1+r)$ is present in both, so factor $P(1+r)$ out

$$
\begin{aligned}
& =P(1+r)[1+r] \\
& =P(1+r)^{2} \text { (b/c 1+r repeats twice) }
\end{aligned}
$$

We invest $P(1+r)^{2}$ into year 3 :
amount at the end of year 3: $A=P(1+r)^{2} \cdot 1+P(1+r)^{2} r$

$$
\begin{aligned}
& =P(1+r)^{2}(1+r) \\
& \left.=P(1+r)^{3} \text { (b/c now } 1+r \text { repeats } 3 \text { times }\right)
\end{aligned}
$$

We invest $P(1+r)^{3}$ into year 4:
amount at end of year 4: $A=P(1+r)^{3} \cdot 1+P(1+r)^{3} r$

$$
\begin{aligned}
& =P(1+r)^{3}(1+r) \\
& =P(1+r)^{4}(\mathrm{~b} / \mathrm{c} \text { now } 1+4 \text { is present } 4 \text { times })
\end{aligned}
$$

Amount at the end of t years:
$A=P(1+r)^{t}$
discrete compounding formula
(simplified version)
Defintion of the number "e ":
Invest 1 dollar, for 1 year, at 100% interest and change the number of times we compoun the interest
$A=1\left(1+\frac{1}{n}\right)^{n}, 1=1$ dollar, $1=$ rate of 100% $n=$ variable
$n=1: 1\left(1+\frac{1}{1}\right)^{1}=1(1+1)=1 \cdot 2=2$ (begin with 1 dollar and end up with 2)
$n=100: 1\left(1+\frac{1}{100}\right)^{100}$ (invest 1 dollar, compound 100 times over 1 year but the $1 / 100$ interest rate per period)

$$
=2.704813829
$$

$$
2.7 \text { repeats... }
$$

$n=10,000: 1\left(1+\frac{1}{10000}\right)^{10000}=2.718145927$
$n=100,000: 1\left(1+\frac{1}{100,000}\right)^{100,000}=2.718268237 \ldots$
As $n \rightarrow \infty, 1\left(1+\frac{1}{n}\right)^{n} \rightarrow 2.718281693 \ldots$
Invest 1 dollar, for 1 year, at 100%, and get only about 2.718 dollars. This number is called "e".
Euler but we say it as "Oiler".
Edx.org
$n=10,000,000: 1\left(1+\frac{1}{10,000,000}\right)^{10,000,000}=2.718281693$
Most general form of discrete compounding: $A=P\left(1+\frac{r}{n}\right)^{n t} \Leftarrow$ take math 200.

> A = future value, $\mathrm{P}=$ =principal.. money being invested right now, $\mathrm{r}=$ rate of interest $\mathrm{n}=\mathrm{number}$ of times we compound, $\mathrm{t}=$ time $\frac{r}{n} \rightarrow$ interest rate at the end of each period $\mathrm{nt}=$ total number of times we compound

Say we invest 10000 at 3% for 4 years and we compound 4 times per year.
$\mathrm{P}=10000,3 \%=.03, \mathrm{t}=4$ years, compound 4 times per year means $\mathrm{n}=4$
$A=10000\left(1+\frac{0.03}{4}\right)^{4 \cdot 4}=10000(1+0.0075)^{16}=\$ 11,269.92$
Interest = A-P=11269.92-10000=\$1, 269.92
going from discrete compounding to continuous compouding: $A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
\begin{aligned}
& \text { not obvious: } \mathrm{A}=P\left(1+\frac{1}{\frac{n}{r}}\right)^{n t} \quad b / c \frac{1}{n / r} \xrightarrow{\mathrm{KCF}} 1 \cdot \frac{r}{n}=\frac{r}{n} \\
& \text { set } \mathrm{n} / \mathrm{r}=\mathrm{m}: \\
& n=m r
\end{aligned} \quad \mathrm{~A}=P\left(1+\frac{1}{m}\right)^{m r t} \quad \text { (replace } \mathrm{n} \text { with mr in expo.) }
$$

recall that $\left(1+\frac{1}{m}\right)^{m} \rightarrow e$ when m becomes huge!

$$
A=P(e)^{r t}\left(\text { replace }\left(1+\frac{1}{m}\right)^{m}\right. \text { with e) }
$$

Example 8/Compound Interest , Page 386:
A total of $\$ 12,000$ is invested at an annual interest rate of 9%. Find the balance after 5 years:
a. annual $(\mathrm{n}=1) A=12000\left(1+\frac{0.09}{1}\right)^{1 \cdot 5}=12000(1+0.09)^{5}=18463.49$ Interest $=A-P=18463.49-12000=6463.49$
b. quarterly: $(\mathrm{n}=4)$ (every three months) $A=12000\left(1+\frac{0.09}{4}\right)^{4 \cdot 5}=18726.11$ interest= 18726-12000 $=6726.11$
c. monthly (end of each month) $n=12: A=12000\left(1+\frac{0.09}{12}\right)^{12 \cdot 5}=18788.17$, interest= $18788.17-12000=6788.17$
d. continuous compounding: $A=P e^{r t}$

$$
A=12000 e^{0.09 \cdot 5}=18,819.75
$$

This is the most we can make using $\mathrm{P}=12000, \mathrm{r}=9 \%$ and $\mathrm{t}=5$.

IRA= Individual Retirement Account! Successful people think 5,10,20,25 years ahead...
Next week class will be on zoom. I will send the link out on MyOpenMath. Attendance will be checked as usual. Please be sure to take notes because they will have to be uploaded as always.

