Please be sure to take detailed notes as usual. Please be sure your camera is on so I can be sure you're here.
I will check the attendance at some point. We'll start a little after 4 once more people join.
Please be sure your microphone is off so I don't get background sound.

Section $4.3 /$ What does $f "$ say about $f ?$
$\cup f^{\prime}<0, f^{\prime}=0, f^{\prime}>0$
$\cap f^{\prime}>0, f^{\prime}=0, f^{\prime}<0$
\or $\quad f^{\prime}=$ constant


We see $f$ is always above the tangent lines along f . When this is true, f is said to be cocave up. $\cup$ (cupped hand with finger tips towards ceiling.)

We see that $f$ is always below its tangent lines.
1st derivative test(review)
When x makes $f^{\prime}=0$, and $f^{\prime}<0$ and $\cup$ becomes $f^{\prime}>0$, we have a local min. When x makes $f^{\prime}=0$, and $f^{\prime}>0$ and becomes $f^{\prime}<0$, we have a local max. $\cap$ When this is true, $f$ is said to be concave down. $f$ looks like $\cap$.

Concavity test: If $f^{\prime \prime}(x)>0$ for all $x$ in I, then the graph of $f$ is concave up over I.
$\frac{\underbrace{\prime \prime}>0}{} f^{\prime \prime}$

If $f^{\prime \prime}(x)<0$ for all $x$ in $I$, then the graph of $f$ is concave down over I.

What happens at $f^{\prime \prime}=0$ ? A point $P(x, y)$ is called an inflection point if $f$ is continous there and the curve changes from concave up to concave down or from cocave down to concave up.

or


Second Derivative Test: Suppose $f$ " is continuous at $x=c$.
(a) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then $f$ has a local minimum at $x=c$. (b) If $\overline{f^{\prime}(c)=0}$, and $f^{\prime \prime}(c)<0$, the $f$ has a local max at $x=c$.

example 1: (our own) $f(x)=x^{2}, f^{\prime}(x)=2 x, f^{\prime \prime}(x)=2$

$f^{\prime}=0$ at $x=0$. second derivative test tells us
$f^{\prime \prime}$ at $x=0$ is $\left.2>0\right\}$ that at $x=0, f$ has a local min.
$f^{\prime \prime}=2>0$ for all $x$
$\Rightarrow \mathrm{f}$ is always concave up!
(f looks like a cupped hand with fingers towards ceiling) (smiley parabola)
example 2: $f(x)=x^{4}-4 x^{3}$
$\lim _{x \rightarrow \infty} f(x)=$ ? notice $x^{4}$ leads, so we have $\lim _{x \rightarrow \infty} x^{4}=\infty^{4}=+\infty \quad \uparrow$
$\lim _{x \rightarrow-\infty} f(x)=$ ? notice that $x^{4}$ leads (4>3 in exponents), so we have $\lim _{x \rightarrow-\infty} x^{4}=(-\infty)^{4}=+\infty f$ is $\uparrow$
$f^{\prime}(x)=\left(x^{4}-4 x^{3}\right)^{\prime}=\left(x^{4}\right)^{\prime}+\left(-4 x^{3}\right)^{\prime}=4 x^{3}-12 x^{2}$ (power rule)
$f^{\prime \prime}(x)=\left(f^{\prime}(x)\right)^{\prime}=\left(4 x^{3}-12 x^{2}\right)^{\prime}=\left(4 x^{3}\right)^{\prime}+\left(-12 x^{2}\right)^{\prime}=12 x^{2}-24 x$
critical numbers are found by setting $\mathrm{f}^{\prime}=0$ and solving for x :
$4 x^{3}-12 x^{2}=0$
factor 4 x out: $4 x^{2}(x-3)=0 \quad$ Does $\mathrm{x}=0$ give a local max or local min?
$4 \mathrm{x}^{2}=0$$\quad$ or $\quad \begin{aligned} \mathrm{x}-3=0 \\ x=0\end{aligned}$
in short:
$4 \cdot(+)>0$ unless $\mathrm{x}=0$
$\cup$ or $\cap$ rough concavity pictures for remembering what things mean! checking $f$ " is faster here:
$f^{\prime \prime}(0)=12 \cdot 0^{2}-24 \cdot 0=0-0=0$ (when $\mathrm{f}^{\prime \prime}=0$, second derivative test fails)
Does $x=3$ give us a local max or min? $f^{\prime \prime}(3)=12 \cdot 3^{2}-24 \cdot 3$

$$
\begin{aligned}
& =12 \cdot 9-72 \\
& =36>0
\end{aligned}
$$

Since $f^{\prime \prime}(3)>0$, and $f^{\prime}(3)=0$, we have a local $\min$ at $x=3$. Graph of $f$ looks like $\cup$.
Where is the graph concave up? To answer, solve $\mathrm{f}^{\prime \prime}(\mathrm{x})=0$ and check the signs around these values.

| $12 x^{2}-24 x=0$ (set f"=0) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| factor 12x: $12 x(1 x-2)=0$ |  |  |  |  |
| set $12 x=0 \quad x-2=0$ | $12(-1)^{2}-24 \cdot(-1)$ | $f$ looks | $12 \cdot 1^{2}-24 \cdot 1$ | $12 \cdot 3^{2}-24 \cdot 3$ |
| $x=0 \quad x=2$ |  |  | $=12-24$ | $12 \cdot 3^{2}-24 \cdot 3$ |
|  | $=12+24$ | like $\cup$ | = 12-24 | $=12 \cdot 9-72$ |
|  | $=36>0$ |  | $=-12<0$ | $>0 \mathrm{f}$ is CU |
|  | $C U=$ concave up |  | $f$ is CD or |  |

At $x=0$, notice $f "$ has this behavior:
left of $x<0, f ">0$ and for $x>0, f "<0$, so $f "$ switches its sign. This means $f$ switches concavity.
immediately to the left of $x=2, f "<0$ and to the right of $x=2, f ">0$, so $f$ " switches signs. This means $f$ switches concavity,

## Inflection Points:

$\mathrm{x}=0, \mathrm{f}$ " switches, so IP!
$\boldsymbol{f}(0)=0^{4}-4 \cdot 0^{3}=\mathbf{0}$
IP1: $(0,0)$
$x=2, f "$ switches, so IP2:
$f(2)=2^{4}-4 \cdot 2^{3}=16-4 \cdot 8=16-32=-16$
IP2: $(2,-16)$
At $x=3$, we have a local min:
$f(3)=3^{4}-4 \cdot 3^{3}=3^{3}(3-4)=27(-1)=-27$
factored $3^{3}$ out b/c it's common
summary: end behavior on right, end behavior on left, roots of function, local max, local min, concavity, inflection points!
right end behavior: $\lim _{x \rightarrow \infty} f(x)=$ ?
left end behavior: $\lim _{x \rightarrow-\infty} f(x)=$ ?
roots: $f(x)=0$ and solve for $x$.
concavity: $\mathrm{f}^{\prime \prime}(\mathrm{x})>0$ means CU
$f^{\prime \prime}(x)<0$ means CD
local max: $f^{\prime}=0$ and $f^{\prime \prime}<0$
get this $x$ from $f^{\prime}(x)=0$ (solve this equation)
local min: $\mathrm{f}^{\prime}=$ and f " $>0$
get this $x$ from $f^{\prime}(x)=0$
special case: when $f^{\prime \prime}(c)=0$ at some $x=c\left(f^{\prime}(c)=0\right)$, then $f^{\prime \prime}$ gives no inform. In this case, check behavior as in example above by looking at signs of f " around $x=c$.

Inflection points: Solve $f^{\prime \prime}(x)=0$. Plot the roots of $f^{\prime \prime}$ on a line. Check behavior of $f^{\prime \prime}$ around the roots. If $f$ " $<0$ and goes to $f ">0$, it's an inflection point on $f$.

If $f ">0$ and goes to $f "<0$, it's an inflection point on $f$ at the value of $x$ that makes $f "=0$.

Q2 homework:

## Let $g(x)=9 x^{3}-x^{2}+7 x+7$ :

Find $g^{\prime}(x)=\left(9 x^{3}\right)^{\prime}+\left(-x^{2}\right)^{\prime}+(7 x)^{\prime}+(7)^{\prime}=27 x^{2}-2 x+7$
Find $g^{\prime \prime}(x)=\left[f^{\prime}(x)\right]^{\prime}=\left(27 x^{2}\right)^{\prime}+(-2 x)^{\prime}+7^{\prime}=54 x-2$
For which value(s) of $x$ does $f^{\prime \prime}(x)=0$ ?
f" $(\mathrm{x})=0$
$54 x-2=0$
$54 x=2$
$x=2 / 54=1 / 27$
Does $x=1 / 27$ give us an inflection point? check signs of $f$ " around $x=1 / 47$ :

Q3: Given $g(x)=6 x^{3}-81 x^{2}+360 x$
find $g^{\prime}(x)=18 x^{2}-162 x+360$ set $g^{\prime}(x)=0$ and solve for $x$ : $18 x^{2}-162 x+360=0$
divide 18 away: $x^{2}-9 x+20=0$
factor: $(x-4)(x-5)=0$
$x=4, x=5$ where $f^{\prime}(4)=0$, or $f^{\prime}(5)=0$
find $g^{\prime \prime}(x): g^{\prime \prime}(x)=\left[g^{\prime}(x)\right]^{\prime}$
$=\left(18 x^{2}-162 x+360\right)^{\prime}$
$=36 x-162$
Evaluate $g^{\prime \prime}(5)$..why? b/c $x=5$ says $f^{\prime}=0$ and we have seen that if $g^{\prime \prime}(5)>0$, we have $a \cup$ or , if $\mathrm{g}^{\prime \prime}(5)<0$, we have $\cap$.
$g^{\prime \prime}(5)=36 \cdot 5-162=18>0, \mathrm{f}$ is CU .
Since $g^{\prime}(5)=0$ and $g^{\prime \prime}(5)>0$, so we have a local min.

SO it's CD
1/27


Q1: $\mathrm{C}(\mathrm{x})=\mathrm{x}^{3}-18 x^{2}+105 x+24$
a) Find $C^{\prime}(x) \xrightarrow{\text { power rule each term }} 3 x^{2}-36 x+105$
b) Find $C^{\prime \prime}(x) \xrightarrow{\text { power rule each term of } \mathrm{C}^{\prime}(\mathrm{x})} 6 x-36$
c) Find any critical points of $C(x)$, found by writing $C^{\prime}(x)=0$ or $C^{\prime}(x)$ is DNE!)

$$
C^{\prime}(x)=0
$$

$3 x^{2}-36 x+105=0$
divide 3: $x^{2}-12 x+35=0$
factor: $(x-7)(x-5)=0$
e )Find the local max:
either first derivative or second derivative test with $\mathrm{f}^{\prime}=0$.
$x=5$ : (from first derivative)

$$
x=7, x=5
$$

d) critical point of $\mathrm{C}^{\prime \prime}: \mathrm{C}^{\prime \prime}(\mathrm{x})=0$

$$
C^{\prime}(5)=0 \text { and } C^{\prime \prime}(5)=6 \cdot 5-36=30-36=-6<0!
$$

CD local max at $x=5$.

$$
\begin{aligned}
& 6 x-36=0 \\
& 6 x=36 \\
& x=6
\end{aligned}
$$

## f) find the local min:

$x=7$ from first derivative :
$C^{\prime}(7)=0$, so horizontal tangent line on $f$ and
$C^{\prime \prime}(7)=6 \cdot 7-36=42-36=6>0$, so CU..
g) Find the inflection point:

check behavior of $C$ " around its own critical $x$ value. $x=6$ :

$$
\begin{aligned}
& C^{\prime \prime}(0)=6 \cdot 0-36 \\
& =0-36 \\
& =-36<0 \\
& C^{\prime \prime}(7)=6>0 \text { (above we have } C "(7) \text { already) } \\
& \text { C" switches signs at } x=6 \text {, so } C \text { (original function) has an } \\
& \text { inflection point at } x=6 \text {. }
\end{aligned}
$$

my habit is to write $f(x)$, or $f^{\prime}$ or $f^{\prime \prime}$...but sometimes functions have different names!!!

