Calculus 1 notes..11/2/2023...more from section 3.7:

1. A particle moves according to $f(t)=t^{3}-12 t^{2}+36 t$ (position function for any $0 \leq t \leq 8$) seconds/feet
(a) velocity $=s^{\prime}(t)=\left(t^{3}\right)^{\prime}+\left(-12 t^{2}\right)^{\prime}+(36 t)^{\prime}=3 t^{2}-24 t+36$
(b) velocity at $\mathrm{t}=3$: $v(3)=s^{\prime}(3)=3 \cdot 3^{2}-24 \cdot 3+36=3 \cdot 9-72+36=27-72+36=-9 \mathrm{~m} / \mathrm{s}$ The minus tells us it's going left. Velocity is speed but signed so we know left or right motion.
(c) When is the particle at rest? At rest means velocity $=0$.
$3 t^{2}-24 t+36=0$ (set $s^{\prime}(t)$ equal to 0)
divide by $3: t^{2}-8 t+12=0$
factor the LHS: $(t-2)(t-6)=0$
solve for $\mathrm{t}: t=2, t=6$. both fall within 0 to $\cdot 8$ from above.

draw a number line and mark the roots $v(1)=3 \cdot 1^{2}-24 \cdot 1+36=3-24+36=15>0$ (right pointing arrow)
of v..and test values like $t=1, t=3$ and $t=7$.

$$
v(3)=3 \cdot 3^{2}-24 \cdot 3+36=-9 \text { (from above) }
$$

$$
v(7)=3 \cdot 7^{2}-24 \cdot 7+36 \xrightarrow{\text { calculator work.... }} 15>0 \text { (right pointing arrow) }
$$

(e) total distance traveled during the first 8 seconds: The particle turns twice at $t=2$ and $t=6$.
total distance $=$ distance from 0 to 2 seconds + distance from 2 to 6 seconds + distance from 6 to 8 seconds. distance as absolute value of displacement= $\mid f($ later time $)-f($ e arlier time $) \mid$ distance $=|\ldots| \geq 0$
compute $f(0), f(2), f(6), f(8)$
$f(0)=0^{3}-12 \cdot 0^{2}+36 \cdot 0=0, \quad f(2)=2^{3}-12 \cdot 2^{2}+36 \cdot 2=8-12 \cdot 4+72=8-48+72=-40+72=32$
$f(6)=6^{3}-12 \cdot 6^{2}+36 \cdot 6=0 \quad f(8)=8^{3}-12 \cdot 8^{2}+36 \cdot 8=32$
distance $=|\boldsymbol{f}(\mathbf{2})-f(0)|+|f(6)-\boldsymbol{f}(\mathbf{2})|+|f(8)-f(6)|=|32-0|+|0-32|+|32-0|=32+32+32=96$ feet

Example 2: A particle moves along a straight line and its position at time t is given by $\mathrm{s}(\mathrm{t})=2 t^{3}-18 t^{2}+30 t$
(a) Find the velocity (in $\mathrm{ft} / \mathrm{sec}$) of the particle at any time $\mathrm{t}=0$:
$s^{\prime}(t)=\left(2 t^{3}\right)^{\prime}+\left(-18 t^{2}\right)^{\prime}+\left(30 t^{1}\right)^{\prime} \xrightarrow{\text { power rule one each term }} 2 \cdot 3 \cdot t^{3-1}-18 \cdot 2 \cdot t^{2-1}+30 \cdot 1 \cdot t^{1-1}=6 t^{2}-36 t+30$ $s^{\prime}(0)=v(0)=6 \cdot 0^{2}-36 \cdot 0+30=6 \cdot 0-0+30=30 \mathrm{ft} / \mathrm{sec}$ (object is moving at $\mathrm{t}=0$ at 30 feet $/ \mathrm{second}$)
(b). The particle stops moving (is at rest) twice, first when $t=\ldots .$. and then again when $t=\ldots$ $\mathrm{s}^{\prime}(\mathrm{t})=0 \xrightarrow{\text { solve }} 6 t^{2}-36 t+30=0 \xrightarrow{\text { divide by } 6} t^{2}-6 t+5=0 \xrightarrow{\text { factor LHS }}(t-1)(t-5)=0 \xrightarrow{\text { solve for } \mathrm{t}} t=1, t=5$

(d) find the total distance the particle traveles from $\mathrm{t}=0$ to $\mathrm{t}=12$:

test values: $t=0.5 \quad t=2 \quad t=6 \quad \leftarrow$ these numbers are not unique or special...
$s^{\prime}(0.5)=6 \cdot 0.5^{2}-36 \cdot 0.5+30=13.5 \quad$ just between the given values $0,1,5$ and 12 .
$s^{\prime}(2)=6 \cdot 2^{2}-36 \cdot 2+30=-18$

$$
s^{\prime}(6)=6 \cdot 6^{2}-36 \cdot 6+30=30
$$

total distnce $=$ distance from $t=0$ to $t=1+$ distance from $t=1$ to $t=5+$ distance from $t=5$ to $t=12$
$s(0)=2 \cdot 0^{3}-18 \cdot 0^{2}+30 \cdot 0=0, s(1)=2 \cdot 1^{3}-18 \cdot 1^{2}+30 \cdot 1=14 \mathrm{ft}, \quad \mathrm{s}(5)=2 \cdot 5^{3}-18 \cdot 5^{2}+30 \cdot 5=-50$
$s(12) \xrightarrow{\text { from above }} 1224 \ldots$ distance $=|s(1)-s(0)|+|s(5)-s(1)|+|s(12)-s(5)| \quad .|1224-(-50)|$
$=|14-0|+|-50-14|+|1224-(-50)|$
$=|14|+|-64|+|1274|$
$=14+64+1274=1352$ feet
(particle turns)

$$
\begin{aligned}
& t=5 \\
& |s(5)-s(1)| \\
& |s(1)-s(0)|
\end{aligned}
$$

