Math 200 notes 11/15/2023. Please put away phones and computers and take meticulous notes.
Section 6.2/Compound Interest:
Annual: once per year, Semiannual: twice per year, Quarterly: 4 times per year, Monthly: 12 times per year, Daily: 365 times per year If the interest due at the end of each period is added to the principal we call this compounding.

Example 1/Page 302: A bank pays interest of 4% per annum compounded quarterly. If 200 is deposited in an account and the quarterly interest is left in the account, how much money is in the account after 1 year?
$I=P r t$:
end of first quarter (3 months): $I=200 \cdot 0.04 \cdot\left(\frac{3}{12}\right)=\$ 2.00$. New principal $=200+2=202$. end of second quarter (next 3 months:) $I=202 \cdot 0.04 \cdot \frac{3}{12}=\$ 2.02$. New principal $=202+2.02=204.02$
end of third quarter (next 3 months) $I=204.02 \cdot 0.04 \cdot \frac{3}{12}=\$ 2.04$. New principal $=204.02+2.04=206.06$ end of fourth quarter (last 3 monhts) $I=206.06 \cdot 0.04 \cdot \frac{3}{12}=2.06$. New pricipal $=208.12$ For each part above we have $\frac{3}{12}=\frac{x \cdot 1}{x \cdot 4}=\frac{1}{4} \Leftarrow 4$ is the number of times we compound.

$$
\text { If we repeat this process for } t \text { year, we end up with } A=P\left(1+\frac{r}{n}\right)^{n t}
$$

$$
\begin{aligned}
& \begin{array}{l}
2=202 . \\
=202+2.02=204.02 \\
204.02+2.04=206.06 \\
208.12 \\
\text { mpound. }
\end{array}\left\{\begin{array}{l}
\text { observations: } \\
I=P r \cdot \frac{1}{n}=P \cdot \frac{r}{n} \\
A=P+I=P+P \cdot \frac{r}{n}=P\left(1+\frac{r}{n}\right)^{1} \\
A=P\left(1+\frac{r}{n}\right) \cdot 1+P\left(1+\frac{r}{n}\right) \frac{r}{n} \\
P(1+r / n) \text { is common so factor it out: } \\
A=P\left(1+\frac{r}{n}\right)\left[1+\frac{r}{n}\right]=A\left(1+\frac{r}{n}\right)^{2}
\end{array}\right. \\
& \qquad A=P\left(1+\frac{r}{n}\right)^{2} \cdot 1+P\left(1+\frac{r}{n}\right)^{2} \frac{r}{n} \\
& \text { r of times } \quad A=P\left(1+\frac{r}{n}\right)^{2}\left[1+\frac{r}{n}\right]=P\left(1+\frac{r}{n}\right)^{3} \\
& \Rightarrow \text { So after } \mathrm{n} \text { periods we get } A=P\left(1+\frac{r}{n}\right)^{n}
\end{aligned}
$$

Discrete compounding formula: $P=$ princpal, $r=r a t e, n=$ number of times we compound, and $t=t i m e$.
example 2/page 304: If $\$ 1000$ is borrowed at a rate of 10% and no payments are made on this loan, what is the amount after 5 years if the compounding takes place: annual $\mathrm{n}=1: A=1000\left(1+\frac{0.1}{1}\right)^{1 \cdot 5}=1000(1+0.1)^{5}=\$ 1610.51 \Leftarrow$ interest $=A-P=1610.51-600=\$ 610.51$ monthly $\mathrm{n}=12: A=1000\left(1+\frac{0.1}{12}\right)^{12 \cdot 5}=1000(1+0.0083)^{60}=1645.31 \Leftarrow$ interest $=A-P=1645.31-1000=\$ 645.31$
daily $\mathrm{n}=365: A=1000\left(1+\frac{0.1}{365}\right)^{365 \cdot 5}=1000(1.64861)^{1825}=1648.61 \Leftarrow$ interest $=A-P=1648.61-1000=\$ 648.61$
observations based on example above:

Per Annum Rate:	Compounding Method	Interest Rate per Period: (effective interest rate)
10%	Annual	0.1
10%	monthly	$0.1 / 12=0.00833 \Leftarrow$ at end of each month rate is not 10%
10%	Daily	$0.1 / 365=0.000274 \Leftarrow$ at the end of each day rate is not 10%

Example 3: Investing 10,000 at an annual rate of 4\% compounded annually, semiannually, quarterly, monthly and daily will yield the following amounts after 1 year:
Annual compounding $(\mathrm{n}=1) A=P\left(1+\frac{r}{n}\right)^{n t}=10000\left(1+\frac{0.04}{1}\right)^{1 \cdot 1}=10000(1+0.04)=\$ 10,400 . \quad t=1, n=1$
semiannual compounding $(n=2) \quad A=P\left(1+\frac{r}{2}\right)^{2 \cdot 1}=10000\left(1+\frac{0.04}{2}\right)^{2}=\$ 10,404.00$
monthly compounding $(n=12) \quad A=1000\left(1+\frac{0.04}{12}\right)^{12 \cdot 1}=\$ 10,407.42 \quad$ Seems as we increase n, the value goes up.
daily compounding $(n=365) \quad A=1000\left(1+\frac{0.04}{365}\right)^{365}=\$ 10,408.08$

$$
10400 \rightarrow 10404 \rightarrow 10407 \rightarrow 10408
$$

As we compound more and more, the exponent goes up but the rate per period goes down, so we don't end up with an infinite number of dollars.

A particular expression that's important here:

$$
\begin{aligned}
& 1\left(1+\frac{1}{n}\right)^{n \cdot 1}, 1=\text { investment of } 1 \text { dollar } \\
& 1=\text { interest rate of } 100 \% \\
& n=\text { number of times we compound } \\
& t=1
\end{aligned}
$$

Invest 1 dollar, for 1 year, at 100\% interest, and see what happens as the number of compounding periods goes to infinity.

$$
\left.\begin{array}{l}
n=1: \quad 1(1+1 / 1)^{1}=1(1+1)^{1}=1(2)^{1}=2 \\
n=2: 1(1+1 / 2)^{2}=2.25 \Leftarrow \text { not } 4 \\
n=5: 1(1+1 / 5)^{5}=2.48832 \Leftarrow \text { bigger but not so much bigger } \\
n=10: 1(1+1 / 10)^{10}=2.5937 \Leftarrow \text { bigger but not so much bigger } \\
n=10,000: 1(1+1 / 10000)^{10000}=2 . \overline{718} 145927 \\
n=100,000: 1(1+1 / 100000)^{100000}=2 \cdot \overline{7182} 68237 \\
n=1,000,000: \quad 1\left(1+\frac{1}{1,000,000}\right)^{1,000,000}=2 \cdot \overline{71828} 0469 \\
n=1,000,000,000: 1\left(1+\frac{1}{1,000,000,000}\right)^{1,000,000,000}=2.718281827
\end{array}\right\}
$$

the first 2 repeats
last two values:
2.718145927
2.718268237
2.718 is repeating

As $n \rightarrow \infty, 1\left(1+\frac{1}{n}\right)^{n} \rightarrow 2.718 \ldots$
$2.718 \ldots$ is called e
Euler (oiler)

If we do a bit more mathmagic, we can produce the continous compounding formula Imagine we compute the interest at the end of each tiny fraction of a second...we get a new formula:
$A=P e^{r t}$
discrete compounding: $A=P\left(1+\frac{r}{n}\right)^{n t}, \quad$ cont. compounding $=P e^{r t}$, where e is as defined above.
example 4: The amount A that results from investing a principal P of $\$ 10,000$ at an annual rate r of 4% compounded cont. for a time t of 1 year is
$A=10000 e^{0.04 \cdot 1}=\$ 10,408.11$ This is the most we can get at 4% if we invest 10,000 for 1 year.
Interest $=A-P=\$ 10,408.11-\$ 10,000=\$ 408.11$

Example 5: On January 1, 2010, 2000 was placed in an IRA(individual retirement account) that will pay interest of 3% per annum compounded cont.
(a) What will the IRA be worth on Jaunary 1, 2030?

$$
\mathrm{t}=2030-2010=20 \text { years }
$$

$A=2000 \cdot e^{0.03 \cdot 20}=3644.24$

Interst= $A-P=3644.24-2000=1644.24$ (average over 20 years $1644.24 / 20=82$ dollars per year average)
(b) What is the effective annual rate of interest?
b / c it says annual, we mean $t=1$:
interest= Prt
$\underbrace{A=2000 e^{0.03 \cdot 1}=60.91}$

$$
\begin{aligned}
& \text { effective annual simplest interest rate } \\
& 60.91=2000 r \cdot 1 \quad \text { Interest }=\text { Prt (simple interest) } \\
& \frac{60.91}{2000}=r \\
& r=0.0305=3.05 \% \text { little bit different from } 3 \% \text {. }
\end{aligned}
$$

If we compounded once per year, we'd have to use 3.05% and not 3% to get the same interest of 60.91 .

$$
I=2000 \cdot 0.0305
$$

$$
\frac{60.91}{2000} \approx 0.0305
$$

Effective annual rate is the rate that gives the same amount of interest as the cont. comounding result, but the interest is computed only once.

