Please keep phones and computers away while doing notes.

Section 3.10/Linear Approximations and Differentials

pick up here: $f^{\prime \prime}(1)=\frac{1}{2 \sqrt{1+3}}=\frac{1}{2 \sqrt{4}}=\frac{1}{2 \cdot 2}=\frac{1}{4}$ $L(x)=2+\frac{1}{4}(x-1)=2+\frac{1}{4} x-\frac{1}{4}=\frac{8}{4}+\frac{1}{4} x-\frac{1}{4}=\frac{1}{4} x+\frac{7}{4}$

Example 1/Page 251 : Find the linearization of the function $f(x)=\sqrt{x+3}$ at $a=1(x=1)$ and use it to find the approximate value s of $\sqrt{3.98}$ and $\sqrt{4.05}$

$$
\begin{aligned}
& L(x)=f(a)+f^{\prime}(a)(x-a) \\
& f(1)=\sqrt{1+3}=\sqrt{4}=2, \quad f^{\prime}(x)=\frac{d}{d x} \sqrt{x+3}=\frac{d}{d x}(x+3)^{1 / 2} \\
& =\frac{1}{2}(x+3)^{-1 / 2} \frac{d}{d x}(x+3)=\frac{1}{2(x+3)^{1 / 2}} \cdot 1=\frac{1}{2 \sqrt{x+3}}
\end{aligned}
$$

form: $m x+b$
So $\frac{1}{4} x+\frac{7}{4} \approx \sqrt{x+3}$ when x is close to $x=1$!
Now $\sqrt{3.98}=\sqrt{0.98+3}=\frac{1}{4}(0.98)+\frac{7}{4}=1.995$
Let's use this: $\sqrt{3.98}=\sqrt{0.98+\mathbf{3}}$ next..... Approximate $\sqrt{4.05}=\sqrt{1.05+8}=\frac{1}{4}(1.05)+\frac{7}{4}=2.0125$
$\sqrt{3.75}$ doesn't mean input 3.75.it means $\sqrt{0.75+3}=\frac{1}{4}(0.75)+\frac{7}{4} \quad \sqrt{x+3}$

$$
\sqrt{x+3} \quad=\text { some number... }
$$

error $=|\sqrt{3.98}-1.995|=6.26 \cdot 10^{-6}$ (tiny difference)
error for $x=1.05: \quad=|\sqrt{4.05}-2.0125|=3.88 \cdot 10^{-5}$ (tiny error)
error for $x=2: \sqrt{2+3}=\sqrt{5} \approx \frac{1}{4}(2)+\frac{7}{4}=2.25$

$$
\sqrt{5}=2.24
$$

"Famous physics application" $\mathrm{L}(\mathrm{x})$ to represent $\sin (x)$ at $\mathrm{x}=0$: $L(x)=f(0)+f^{\prime}(0)(x-0)=\sin (0)+\cos (0)(x-0)=0+1(x)=x$
So when x is close to 0 , we can represent $\sin (x)$ with just x !
Graphs shows that around $x=0, \sin (x) \approx x$, since the graph lines pretty much match!
To avoid signs, just do error= $|f(x)-L(x)|=$ magnitude of error big or small??
error

$$
\begin{aligned}
& =x \\
& \text { es } \\
& \text { ror }
\end{aligned}
$$

Usually $\frac{d y}{d x}$ is seen as ONE, UNBREAKABLE symbol!
$\frac{d y}{d x}=f^{\prime}(x) .$. except here we treat $d y / d x$ like a fraction:
$\frac{d y}{d x}=f^{\prime}(x) \xrightarrow{\text { multiply by } \mathrm{dx}} d y=f^{\prime}(x) d x$
$d y \approx \Delta y$

$$
f^{\prime}(x) d x \approx f(x+\Delta x)-f(x)
$$

Example 3/Page 253: Compare the values of Δy and $d y$ if $f(x)=x^{3}+x^{2}-2 x+1$ and x changes from $\mathrm{x}=2$ to $\mathrm{x}=2.05$:
$d x=\Delta x=2.05-2.00=0.05, \quad f^{\prime}(x)=\left(x^{3}\right)^{\prime}+\left(x^{2}\right)^{\prime}+(-2 x)^{\prime}+(1)^{\prime}=3 x^{2}+2 x-2$
$d y=f^{\prime}(x) d x: \quad d y=\left(3 x^{2}+2 x-2\right) \mathrm{dx} \xrightarrow{\text { plug in the values }} d y=\left(3 \cdot 2^{2}+2 \cdot 2-2\right)(0.05)=0.7$
exact change in f as x goes from $x=2$ to $x=2.05$: $f(2.05)-f(2.00)=2.05^{3}+2.05^{2}-2 \cdot 2.05+1-\left(2^{3}+2^{2}-2 \cdot 2+1\right)=0.717625$
$d y=0.7, \Delta y=0.717625 \ldots$ so $d y \approx \Delta y$

What is $\Delta V=$ exact change in the volume $d V$
$r=21(d r=\Delta r=0.05)$
$d V=4 \cdot \pi \cdot 21 \cdot 0.05^{2} \approx 277 \mathrm{~cm}^{3}$. Seems like a big number but lets compare to the volume at $\mathrm{r}=21$:
$\Delta V=$ exact change $\approx d V=277 \mathrm{~cm}^{3}$
relative error using $\Delta \mathrm{V}=\frac{\Delta \mathrm{V}}{V} \xrightarrow{\text { because } \Delta \mathrm{V} \approx \mathrm{dV}} \frac{d V}{V}=\frac{4 \pi r^{2} d r}{\frac{4}{3} \pi r^{3-2}}=\frac{4 d r}{\frac{4 r}{3}}=\frac{4 d r}{1} \cdot \frac{3}{4 r}=3 \frac{d r}{r}$
In words: The relative error in volum is 3 times the relative error in the radius : $\frac{d r}{r} \Leftarrow$ relative error in radius relative error in volume $\approx 3 \cdot \frac{0.05}{21}=0.0071 \xrightarrow{\text { in percent form }} 0.71 \% \Leftarrow$ small!!
$.71 \%=\frac{0.71}{100} \Leftarrow$ divide the volume into 100 boxes.the change in the volume when \times goes from $r=21$ to $r=21.05$ is .71 out of 100 , which is not even one box!
"calculus "= Latin for "small stone"

