Please keep phones and computers away while doing notes.

Section 3.10/Linear Approximations and Differentials

$$f(x) = f(x) + f'(x)(x-a) \leftarrow L$$
 is the linearization of f at x=a.

$$\frac{1}{12} = \frac{1}{12} = f(x) + f'(x)(x-a) \leftarrow L(x)$$

$$f(x) = f(x) - L(x)$$

$$\frac{1}{12} = \frac{1}{12} = f(x) - L(x)$$

$$\frac{1}{12} = \frac{1}{12} = \frac{1}{12} = \frac{1}{12} = \frac{1}{12} = \frac{1}{12} = \frac{1}{12}$$

$$F(x) = \frac{1}{12} = \frac{1}{$$

Example 3/Page 253: Compare the values of Δy and dy if $f(x) = x^3 + x^2 - 2x + 1$ and x changes from x=2 to x=2.05: $dx = \Delta x = 2.05 - 2.00 = 0.05$, $f'(x) = (x^3)' + (x^2)' + (-2x)' + (1)' = 3x^2 + 2x - 2$ dy = f'(x) dx: $dy = (3x^2 + 2x - 2) dx \xrightarrow{\text{plug in the values}} dy = (3 \cdot 2^2 + 2 \cdot 2 - 2)(0.05) = 0.7$

x+⊿x

х

exact change in f as x goes from x=2 to x=2.05: $f(2.05) - f(2.00) = 2.05^3 + 2.05^2 - 2 \cdot 2.05 + 1 - (2^3 + 2^2 - 2 \cdot 2 + 1) = 0.717625$ dy = 0.7, $\Delta y = 0.717625$... so dy $\approx \Delta y$

 Δy Picture shows that dy and Δy are very close but not identical. We express this by writing $dy \approx \Delta y$

 $\frac{dV}{dr} = \frac{4}{3}\pi \cdot 3 \cdot r^2 = 4\pi r^2 \xrightarrow{\text{solve for } dV} dV = 4\pi r^2 dr$

Example 4/Application:

 $V = \frac{4}{3}\pi r^3 \text{ (volume of sphere)}$

The radius of a sphere was measured to be 21 cm with a possible error in measurement of at most .05cm. What is the maximum error in using this value of the radius to compute the volume fo this sphere? r = radius, $\Delta r = change$ in radius= 0.05 cm

What is $\Delta V =$ exact change in the volume dV

$$r = 21 (dr = \Delta r = 0.05)$$

dV= $4 \cdot \pi \cdot 21 \cdot 0.05^2 \approx 277 \text{ cm}^3$. Seems like a big number but lets compare to the volume at r=21: ΔV = exact change \approx dV=277 cm³

relative error using
$$\Delta V = \frac{\Delta V}{V} \xrightarrow{\text{because } \Delta V \approx dV} \frac{dV}{V} = \frac{4\pi r^2 dr}{\frac{4}{3}\pi r^{3-2}} = \frac{4 dr}{\frac{4 r}{3}} = \frac{4 dr}{1} \cdot \frac{3}{4r} = 3 \frac{dr}{r}$$

In words: The relative error in volum is 3 times the relative error in the radius : $\frac{dr}{r} \leftarrow$ relative error in radius relative error in volume $\approx 3 \cdot \frac{0.05}{21} = 0.0071 \frac{\text{in percent form}}{0.71\%} + 0.71\% \leftarrow \text{small}!!$

 $.71\% = \frac{0.71}{100} \leftarrow$ divide the volume into 100 boxes. the change in the volume when x goes from r=21 to r=21.05 is .71 out of 100, which is not even one box!

"calculus "= Latin for "small stone"