Section 5.4/Exponential and Logarithmic Equations:
recall: $a^{x}=a^{y}$ if and only if $x=y$ (If bases are equal, then exponents must be equal)
$2^{3}=8 \Rightarrow$ rewrite as $2^{3}=2^{3}$
$\log _{a} x=\log _{a} y \quad$ if and only if $x=y$.
$\log _{2}(8)=\log _{2}(x) \Rightarrow$ then $x=8!!$
Things that go into functions are called arguments.
$a^{\log _{a} x}=x \quad$ recall: $2^{\log _{2}(8)}=2^{3}=8$
$\log _{a}\left(\mathbf{a}^{x}\right)=x \quad$ recall: $\log _{2}(8)=\log _{2}\left(2^{3}\right)=3$
example 1: $2^{x}=32$

$$
\begin{array}{ll}
2^{x}=32 & \ln x-\ln 3=0 \\
2^{x}=2^{5} & \ln x-\ln 3+\ln 3=0+\ln 3 \\
x=5 & \ln x=\ln 3 \\
& x=3
\end{array}
$$

$$
\left(\frac{1}{3}\right)^{x}=9
$$

$$
\left(3^{-1}\right)^{x}=3^{2}
$$

$$
3^{-x}=3^{2}
$$

$$
-x=2
$$

$e^{x}=7$

$$
x=-2
$$

inverse of e^{x} is \ln function: take \ln of both sides: $\ln e^{x}=\ln 7$ apply power rule on $L H S / b r i n g x$ down: $x \ln e=\ln 7$
recall that Ine means $\log _{e}(e)=1$

$$
\begin{aligned}
& x \cdot 1=\ln 7 \\
& x=\ln 7
\end{aligned}
$$

$\ln x=-3$
exponentiate both sides: $e^{\ln x}=e^{-3}$
recall that e and In are inverse, so they cancel: $\theta^{\ln (x)}=e^{-3}$

$$
x=e^{-3}
$$

$\log x=-1$
rewrite as $10^{\log x}=10^{-1}$
\log and 10 cancel: $x=10^{-1}=\frac{1}{10}$

$$
\log _{3}(x)=4
$$

exponentiate: $3^{\log _{3}(x)}=3^{4}$
3 and $\log _{3}$ cancel: $x=3^{4}$

$$
x=81
$$

example 2 in book: $\quad e^{-x^{2}}=e^{-3 x-4}$
set exponents equal: $-x^{2}=-3 x-4$

$$
\begin{aligned}
& -x^{2}+3 x+4=0 \\
& x^{2}-3 x-4=0(\text { divide by }-1)
\end{aligned}
$$

factor: $\quad(x-4)(x+1)=0$

$$
x-4=0 \quad x+1=0
$$

$$
x=4, \quad x=-1 \text { (they do work i original equation) }
$$

(b) $3 \cdot 2^{x}=42$

$$
\begin{align*}
\frac{3}{3} \cdot 2^{x} & =\frac{42}{3} \\
2^{x} & =14 \Rightarrow 2^{x}, \text { so take base } 2 \text { logs: } \log _{2}\left(2^{x}\right)=\log _{2}(14) \Rightarrow x=\log _{2}(\tag{14}
\end{align*}
$$

$$
x=\frac{\ln 14}{\ln 2} \text { (change bases) }
$$

(3 in book) $e^{x}+5=60$

$$
\begin{aligned}
& e^{x}+5-5=60-5 \\
& e^{x}=55
\end{aligned}
$$

take $\ln : \quad \ln e^{x}=\ln 55$
bring x down: $x \ln ==\ln 55$

$$
\begin{aligned}
& x \cdot 1=\ln 55 \\
& x=\ln 55 \approx 4.007
\end{aligned}
$$

example 6 in book:
$\ln x=2$
$e^{\ln x}=e^{2} \quad$ exponentiate both sides
$x=e^{2}$
b. $\log _{3}(5 x-1)=\log _{3}(x+7)$
logs have same bases and each side has one log so set arguments equal:

$$
\begin{gathered}
5 x-1=x+7 \\
5 x-x-1=x-x+7 \\
4 x-1=7 \\
4 x-1+1=7+1 \\
4 x=8 \\
x=2
\end{gathered}
$$

c. $\log _{6}(3 x+14)-\log _{6}(5)=\log _{6}(2 x)$
first combine LHS: $\log _{6}\left(\frac{3 x+14}{5}\right)=\log _{6}(2 x)$
same bases, so equate arguments! $\quad \frac{3 x+14}{5}=2 x$

$$
\begin{aligned}
& 5 \cdot \frac{3 x+14}{5}=2 x \cdot 5 \\
& 3 x+14=10 x \\
& 3 x-3 x+14=10 x-3 x \\
& 14=7 x \\
& 2=x
\end{aligned}
$$

example 7: $5+2 \ln x=4$

$$
\begin{aligned}
5-5+2 \ln x & =4-5 \\
2 \ln x & =-1 \\
\frac{2 \ln x}{2} & =\frac{-1}{2} \\
\ln x & =\frac{-1}{2} \\
e^{\ln x} & =e^{-1 / 2} \quad \Rightarrow a^{\log _{a}(x)}=\boldsymbol{x} \\
x & =e^{-1 / 2} \quad \\
& e^{\ln x} \text { really means } e^{\log _{e}(x)}=x
\end{aligned}
$$

$\log 5 x+\log (x-1)=2$ recall $\log _{10}(x)$ is $\log x$
$\log (5 x(x-1))=2$
exponentiate: $10^{\log (5 x(x-1))}=10^{2}$

$$
5 x(x-1)=100
$$

$$
\Leftarrow \text { by } \mathrm{a}^{\log _{a}(x)}=x
$$

$$
5 x \cdot x-5 x \cdot 1=100
$$

$$
5 x^{2}-5 x=100
$$

for any base log function, $\log _{a}$ (argument), arguemnt>0
divide by 5: $\frac{5 x^{2}}{5}-\frac{5 x}{5}=\frac{100}{5}$

$$
1 x^{2}-x=20
$$

\Rightarrow quad.

$$
x^{2}-1 x-20=0
$$

$$
(x-5)(x+4)=0 \text { check: }-5(4)=-20, \text { and }-5+4=-1
$$

$$
x=5, x=-4
$$

check with $x=-4: \log (5 \cdot-4)+\log (-4-1)=? 2$
$\log (-20)+\log (-5)$ cannot be equal to $2 \mathrm{~b} / \mathrm{c}$
$\log (-20)$ doesn't exist. $\log (-5)$ doesn't exist!
example 10 in book: Doubling an investment:
You have deposited 500 in an account that pays 6.75% interest, compounded continuously. Formula: $A=P e^{r t}$ $P=$ principal, e=2.718 $\quad r=r a t e(d e c i m a l ~ f o r m), ~ t=t i m e ~$ math 200 we derive $\mathrm{A}=\mathrm{Pe}^{r t}$

How long ($\mathbf{t}=$?) will it take for your money to double?
$A=500 e^{0.0675 t} \quad$ to double means 500 is now $2 \cdot 500$
$2 \cdot 500=500 e^{0.0675 t}$ (LHS gets 2•500)
cancel off 500: $2 \cdot \frac{500}{500}=\frac{500}{500} e^{0.0675 t}$

$$
2=e^{0.0675 t}
$$

since we have e, take $\ln : \quad \ln 2=\ln e^{0.0675 t}$

$$
\begin{aligned}
& \operatorname{In} 2=0.0675 \boldsymbol{t} \cdot \operatorname{In} e \Leftarrow \text { power rule on } \mathrm{RHS} \\
& \operatorname{In} 2=0.0675 \boldsymbol{t} \cdot 1 \\
& \operatorname{In} 2=0.0675 \times \boldsymbol{t} \\
& \frac{\operatorname{In} 2}{0.0675}=\boldsymbol{t} \Rightarrow \text { calculator } t=10.27 \text { years!! }
\end{aligned}
$$

application: retail sales in billions of e-commerce companies in the US from 2002
to 2007 can be modeled by $y=-549+236.7$ Int, where $12 \leq t \leq 17$
(model is derived from some survey data)
During which year did the sales reach 108 billion?
what is t ? $-549+236.7 \ln (t)=108$? (units of billions on LHS and RHS would cancel)

$$
\begin{array}{cc}
-549+549+236.7 \ln (t)=108+549 \\
236.7 \ln (t)=657 & \Rightarrow \text { pick up here }: e^{\operatorname{lnt}}=e^{657 / 236.7} \\
\text { divide: } \frac{236.7}{236.7} \ln (t)=\frac{657}{236.7} & t=e^{657 / 236.7} \\
t \approx 16 .
\end{array}
$$

$$
\ln (t)=657 / 236.7
$$

our t is $12 \leq t \leq 17$

