Please take detailed notes and put away anything unrelated to taking notes.
Rational Functions with Holes:
Consider the function $f(x)=\frac{10 x-30}{x^{2}-1 x-6}, N(x)=10 x-30, D(x)=x^{2}-x-6$
$\xrightarrow{1}$ factor: $f(x)=\frac{10(x-3)}{(x-3)(x+2)}, \quad \xrightarrow{2}$ equation(s) of vertical asymptotes: $\frac{10(x-3)}{(x-3)(x+2)}$.. the non-repeating bottom gives the VA $x+2 \neq 0$
$x \neq-2 \Leftarrow$ vertical asymptote in MOM..put in $x=-2$
$\xrightarrow{3} \mathrm{~N}$ otice $\frac{10(x-3)}{(x-3)(x+2)}$. set the repeating part equal to $0: x-3=0 \rightarrow x=3$ so there is a hole at $x=3, y=2$. Since $x-3$ repeats, cancel it: $\frac{10}{x+2}$ and evaluate at $x=3: \frac{10}{3+2}=\frac{10}{5}=2=y$,
$\xrightarrow{4}$ Horizontal asymptotes: $x=10000: f(10000)=\frac{10 \cdot 10000-30}{10000^{2}-10000-6} \xrightarrow{\text { calculator work... }} 10 \cdot 10^{-4} \Leftarrow$ very small number As $x \rightarrow \infty, y \rightarrow 0$ So the horizontal asymptote is $y=0$. (we approach $y=0$ but NEVER REACH IT)
$\xrightarrow{5} \mathrm{x}$ intercept/(s) as (x,y) pairs: $f(x)=0 \Leftarrow y$

$$
\frac{10 x-30}{x^{2}-x-6}=0 \xrightarrow{\text { cross multiply }} 10 x-30=0\left(x^{2}-x-6\right) \xrightarrow{0 \cdot \text { whatever }=0} 10 x-30=0 \xrightarrow{\text { get } \mathrm{x}} x=30 / 10=3
$$

subtle: seems x intercpet is $x=3$, but rememer that $f(3)$ is not defined ..use original function: $f(3)=\frac{10 \cdot 3-30}{3^{2}-3-6}=\frac{30-30}{9-3-6}=\frac{0}{0} \leftarrow$ not defined! so there is no x-intercpet!

$\xrightarrow{7}$ range in interval notation: \uparrow

$\xrightarrow{8} y$ intercept: $f(0)=\frac{10 \cdot 0-30}{0^{2}-0-6}$

$$
=\frac{-30}{-6}=5
$$

$(0,5)$ is on graph!
$\xrightarrow{9} x=-3: f(-3)=\frac{10(-3)-30}{(-3)^{2}-(-3)-6}$

$$
=\frac{-60}{9+3-6}
$$

$$
=\frac{-60}{12-6}=\frac{-60}{6}=-10
$$

point is $(-3,-10)$

Do not cross x axis b/c we have shown there is NO root!

