Please take detailed notes and put away anything unrelated to taking notes. Rational Functions with Holes:

Consider the function $f(x) = \frac{10x-30}{x^2-1x-6}$, N(x) = 10x-30, $D(x) = x^2-x-6$ $\xrightarrow{1}$ factor: $f(x) = \frac{10(x-3)}{(x-3)(x+2)}$, $\xrightarrow{2}$ equation(s) of vertical asymptotes: $\frac{10(x-3)}{(x-3)(x+2)}$... the non-repeating bottom gives the VA $x \neq -2 \leftarrow$ vertical asymptote in MOM..put in x=-2 $\xrightarrow{3} \text{ N otice } \frac{10(x-3)}{(x-3)(x+2)} \text{ .. set the repeating part equal to } 0: x-3=0 \rightarrow x=3$ Since x-3 repeats, cancel it: $\frac{10}{x+2}$ and evaluate at x=3 : $\frac{10}{3+2} = \frac{10}{5} = 2 = y$ so there is a hole at x=3, y=2. $\xrightarrow{4} \text{Horizontal asymptotes:} \quad x = 10000: f(10000) = \frac{10 \cdot 10000 - 30}{10000^2 - 10000 - 6} \xrightarrow{\text{calculator work}} 10 \cdot 10^{-4} \leftarrow \text{very small number}$ As $x \rightarrow \infty$, $y \rightarrow 0$ So the horizontal asymptote is y=0. (we approach y=0 but NEVER REACH IT) $\xrightarrow{5}$ x intercept/(s) as (x,y) pairs: $f(x) = 0 \Leftarrow y$ subtle: seems x intercpet is x=3, but rememer that f(3) is not defined .use original function: $f(3) = \frac{10 \cdot 3 - 30}{3^2 - 3 - 6} = \frac{30 - 30}{9 - 3 - 6} = \frac{0}{0} \leftarrow$ not defined! so there is no x-intercpet! (€,5) Do not cross x axis b/c we have $\xrightarrow{8} y$ intercept: $f(0) = \frac{10 \cdot 0 - 30}{0^2 - 0 - 6}$... -∞ shown there is NO root! ∝(<u>3</u>,2) $=\frac{-30}{-6}=5$ $x \neq -2$ gap gap (0,5) is on graph! $\xrightarrow{9}$ x=-3: f(-3) = $\frac{10(-3)-30}{(-3)^2-(-3)-6}$ = $\frac{-60}{9+3-6}$ $=\frac{-60}{12-6}=\frac{-60}{6}=-10$ point is (-3, -10)