Make sure the homework for today gets done by $8: 00$ pm later today. If you have to, once you have your system, just use a website to solve the system for m and b. Wolfram Alpha Saying like "I tried one or twice..." nothing! Try 10 times.

System of linear Inequalities: (Page 176...)
(1) Is $(-3,-10)$ a solution of the system
$\left\{\begin{array}{l}-4 x+2 y<4 \\ 2 x+y>-10\end{array} \xrightarrow{\text { replace } x \text { and } y}\left\{\begin{array}{l}-4(-3)+2(-10)<4 \\ 2(-3)+-10>-10\end{array} \xrightarrow{\text { simplify each LHS }}\left\{\begin{array}{l}12-20<4 \\ -6-10>-10\end{array}\right.\right.\right.$
$\xrightarrow{\text { finalize each LHS }}\left\{\begin{array}{l}-8<4 \leftarrow \text { true } \\ -16>-10 \leftarrow \text { false } \xrightarrow{\text { since one false..the point }(-3,-10) \text { does not }} \begin{array}{l}\text { solve the system! }\end{array} \\ \hline\end{array}\right.$
For a point to be a solution it 's got to make both inequalities true.
Graphing $2 x+3 y \geq 6$
1 graph boundary line: $2 x+3 y=6$
$x=0: 2 \cdot 0+3 y=6 \rightarrow 3 y=6 \rightarrow y=2$
$(0,2)$
$y=0: 2 x+3 \cdot 0=6 \rightarrow 2 x=6 \rightarrow x=3$
$(3,0)$
Observe we have > = ..b/c = is present, use solid line
 B / c of $>$..do we shade above or below the line? plug in (0,0): $2 \cdot 0+3 \cdot 0 \geq 6$

Example of one inequality in two

$$
\begin{aligned}
& 0+0 \geq 6 \\
& 0 \geq 6 \text { false! }
\end{aligned}
$$

variables: xandy
DO NOT SHADE WHERE $(0,0)$ is located!
Process: Pretend it's an equation so you can mark the boundary.
set $x=0$ and get y intecept.
set $\mathrm{y}=0$ and get x intercept.
if inequality has \geq or \leq, use a solid line b/c of the = part
mark the intercepts and connect them with a line
if inequality has only < or >, use a dashed line
where to shade? plug in $(0,0)$.if $(0,0)$ makes it true, shade in that region where $(0,0)$ is located.. if $(0,0)$ makes it false, shade on the other side of the line!
Let's practice graphing: $\{2 x+y \leq 6 \quad$ Solution set will be the intersection of the two individually shaded parts.
Let's practice graphing. Repeat steps above for each inequality on its own.
$2 x+y \leq 6$ pretend it's $2 x+y=6$
$x-y \geq 3$ becomes $x-y=3$
$x=0: y=6 \rightarrow(0,6)$
$x=0: 0-y=3 \rightarrow y=-3 \xrightarrow{\text { point }}(0,-3) \bullet$
$y=0: 2 x=6 \rightarrow x=3 \rightarrow(3,0)$
we have $\leq . .<=$.. use solid line
plug in $(0,0): 2 \cdot 0+0 \leq 6$?
$y=0: \mathrm{x}-0=3 \rightarrow x=3 \rightarrow$ point $=(3,0)$
we have $>=$.. use solid line
plug in (0,0): $0-0 \geq 3$
B / c we have $=$ as part of both inequalites...points from the thick black lines also work!

It's where the shadings overlap. Any point from here solves the system.
graph: $\left\{\begin{array}{l}2 x-y \leq-4 \\ x+y \geq-1\end{array}\right.$
$2 x-y \leq-4$ becomes $2 x-y=-4$
$x=0:-y=-4 \rightarrow y=4 \xrightarrow{\text { point }}(0,4)$
$y=0: 2 x=-4 \rightarrow x=-2 \xrightarrow{\text { point }}(-2,0)$
b/c of $=$ in \leq, use solid line
plug in $(0,0): 2 \cdot 0-0 \leq-4$?
$0 \leq-4$ false
so DO NOT shade where $(0,0)$ is located

$$
\begin{aligned}
& x+y \geq-1 \text { becomes } x+y=-1 \\
& x=0: y=-1 \xrightarrow{\text { point }}(0,-1) \bullet \\
& y=0: x+0=-1 \rightarrow x=-1 \xrightarrow{\text { point }}(-1,0) \Leftarrow \text { fix this!! }
\end{aligned}
$$

b/c of the $=$ part of \geq, use a solid line plug in (0,0): $0+0 \geq-1$?
$0 \geq-1$? true
shade where $(0,0)$ is located!
Any point from R solves the system Any point from the thick black lines also solves the system.
point in $\mathrm{R}:(-1.5,6)$
$2(-1.5)-6 \leq-4$
$-3-6 \leq-4$
$-9 \leq-4$ true!
$-1.5+6 \geq-1$?
$4.5 \geq-1$ true!
graph : $\left\{\begin{array}{l}-2 x+y \leq-6 \\ 4 x+5 y \geq 20\end{array}\right.$
$-2 x+y=-6$
$x=0: y=-6 \xrightarrow{\text { point }}(0,-6)$
$y=0:-2 x=-6 \xrightarrow{\text { solve for } x} x=3 \xrightarrow{\text { point }}(3,0)$
b/c of the = part of $<=$, use a solid line plug in $(0,0)$: $-2 \cdot 0+0 \leq-6$?

$$
0 \leq-6 \text { ? false }
$$

so shade where $(0,0)$ is NOT located!
Since both inequalites have = present, the lines that bound the region R also solve the inequalities, so trace over them in bold black.
$4 x+5 y=20$ (boundary line)
$x=0: 5 \mathrm{y}=20 \xrightarrow{\text { divide by } 5} y=4 \xrightarrow{\text { point }}(0,4)$
$y=0: 4 \mathrm{x}=20 \xrightarrow{\text { divide by } 4} x=5 \xrightarrow{\text { point }}(5,0)$
b / c of the $=$ part of $>=$, use a solid line
plug in (0,0): $4 \cdot 0+5 \cdot 0 \geq 20$?
$0+0 \geq 20$
$0 \geq 20$ false
so shade where $(0,0)$ is $100 t 10 c a t e d y$ solves systen

