${ }^{1} f(x)=\frac{x-1}{x^{2}-1} \xrightarrow{\text { factor }} \frac{x-1}{(x-1)(x+1)} \xrightarrow{\text { cancel off } x-1} \frac{1}{x+1}$
2 Notice that $x-1$ goes away. The cancellation is valid as long as x is not equal to 1 .
3. At $x=1$, we get $\frac{1-1}{(1-1)(1+1)}=\frac{0}{0 \cdot 2}=\frac{0}{0} \Leftarrow$ which is not defined
4. Around $x=1$, we get using $x=.9: \frac{0.9-1}{(0.9-1)(0.9+1)}=0.53$
5. Around $x=1$, we get using 1.1: $\left.\frac{1.1-1}{(1.1-1)(1.1+1)}=0.48\right\}$
6. Notice these are very close.

7 We could repeat 4 and 5 above using $x=.99$ and $x=1.01$
$7 b: \quad \frac{0.99-1}{(0.99-1)(0.99+1)}=0.5025 \quad 8 \quad 8$ Notice thesevaluesareeven closer together.
9. So at $x=1$ we have a hole $b / c \frac{0}{0}$ is undefined and the values of y close to the hole are very similar.
10. Remember that the hole, while shown like \circ, is actually just a single missing point that's infinitisemally small, but we can't see it then, so we make it seem bigger than it actually is using \circ.

