Calculus 1 Notes 1128 2023/Section 4.4: Indeterminate Forms and L'Hospital's Rule:
$\mathrm{F}(\mathrm{x})=\frac{\ln x}{x-1} \quad F(1)=\frac{\ln (1)}{1-1}=\frac{0}{0} \Leftarrow$ undefined at $\mathrm{x}=1$
Behavior around $x=1$? $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$ direct. sub fails.
We need a new process..besides trying graphically ..

1. rationalize ..b/c it's an In and $x-1$
fails too..
recall: $\frac{\sqrt{x+1}-1}{x} \Leftarrow$ rationalization worked here...
b/c we do $\frac{\sqrt{x+1}-1}{x} \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1}$ process here: When we have the form $\frac{0}{0}$, this is called an indeterminate form. In the form $\frac{\ln x}{x-1}$, as x goes to $1, \ln 1.00001 \Rightarrow 0$ $\lim _{x \rightarrow \infty} \frac{\ln x}{x-1} \cdot \lim _{x \rightarrow \infty} \operatorname{In} x \rightarrow \infty, \quad \lim _{x \rightarrow \infty}(x-1) \rightarrow \infty$ form $\frac{\infty}{\infty} \Leftarrow$ indeterminate form

Suppose f and g are differentiable functions and $\mathrm{g}^{\prime}(\mathrm{x}) \neq 0$ on an open interval I e.g:(a,b), (e.g. stands for exampli grati) and this interval contains $x=c$. (f and g don't have to be differentiable at $\mathrm{x}=\mathrm{c}$)

$$
\lim _{x \rightarrow a} f(x)=0, \quad \lim _{x \rightarrow a} g(x)=0 \quad \Rightarrow \frac{0}{0} \text { or } \frac{\infty}{\infty}
$$

or $\lim _{x \rightarrow a} f(x)=\infty, \lim _{x \rightarrow a} g(x)=\infty$ then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} \Leftarrow$ not the quotient rule!!

Why is this reasonable??

ratio of tangent lines: $\frac{m_{1}(x-a)}{m_{2}(x-a)}=\frac{m_{1}}{m_{2}}$ ratio of slopes

Behavior of tangent lines and graphs are very similar around $\mathrm{x}=\mathrm{c}$.
example 1: find $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$, check wit $x=1: \frac{\ln 1}{1-1}=\frac{0}{0}$ undefined..indeterminate form
differentiate each function indepdendently.... $\lim _{x \rightarrow 1} \frac{1 / x}{1}=\lim _{x \rightarrow 1} \frac{1}{x}=\frac{1}{1}=1$
example 2: $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}} \quad$ direct sub: $\frac{e^{\infty}}{\infty^{2}}=\frac{\infty}{\infty}$ (indeterminate form)
$\lim _{x \rightarrow \infty} \frac{e^{x}}{2 x} \Leftarrow$ take derivatives of top and bottom, no quotient rule
try direct sub again: $\frac{e^{\infty}}{2 \cdot \infty}=\frac{\infty}{\infty}$ (still indeterminate)
$\lim _{x \rightarrow \infty} \frac{e^{x}}{2} \Leftarrow$ derivative of top and bottom, no quotient rule

$$
\frac{e^{\infty}}{2}=\frac{\infty}{2}=\infty \Leftarrow \text { this is a valid limit..stop here!! }
$$

example 3: $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt[3]{x}}$ try direct sub: $\ln (\infty)=\infty$
form: $\frac{\infty}{\infty}$
$\ln (\infty) \Leftarrow$ not strictly correct math, but communicates the correct idea of plugging in ever bigger values of x !
$\lim _{x \rightarrow \infty} \frac{1 / x}{\frac{d}{d x}(x)^{1 / 3}}$

$$
\sqrt[3]{x} \Rightarrow \text { plug in " } \infty \text { ", } \sqrt[3]{\infty}=\infty
$$

$$
\sqrt[3]{10000000000}=2154
$$

$\lim _{x \rightarrow \infty} \frac{1 / x}{\frac{1}{3} x^{1 / 3-1}}$

$$
\sqrt[3]{1000000000000}=10000
$$

$\sqrt[3]{1000000000000}=10000$
$\lim _{x \rightarrow \infty} \frac{1 / x}{1 / 3 \cdot x^{-2 / 3}} \Leftarrow$ here..helps to use KCF on fraction
$\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{3} x^{-2 / 3}}=\frac{1}{1 / 3} \lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{x^{2 / 3}}}=3 \lim _{x \rightarrow \infty}\left(\frac{1}{x} \frac{x^{2 / 3}}{1}\right)=3 \lim _{x \rightarrow \infty} x^{2 / 3-1}=3 \cdot \lim _{x \rightarrow \infty} x^{2 / 3-3 / 3}$

$$
\begin{aligned}
& =3 \lim _{x \rightarrow \infty} x^{-1 / 3} \\
& =3 \cdot \lim _{x \rightarrow \infty} \frac{1}{\sqrt[3]{x}}=3 \cdot 0=0
\end{aligned}
$$

We have only two forms: $\frac{0}{0}$ or $\frac{\infty}{\infty}$
product of two functions: $\begin{aligned} f \cdot g & =\frac{f}{1 / g} \Leftarrow \text { by k c } f \\ f \cdot g & =\frac{g}{1 / f} \Leftarrow \text { by gcf }\end{aligned} \Rightarrow \frac{f}{\frac{1}{g}}=\frac{\frac{f}{1}}{\frac{1}{g}}=\frac{f}{1} \cdot \frac{g}{1}=f g$

$$
2 \cdot 3=\frac{2}{1 / 3}=\frac{2 / 1}{1 / 3}=\frac{2}{1} \cdot \frac{3}{1}=6
$$

$\lim _{x \rightarrow 0^{+}} x \ln x$ right it's $0 \cdot \operatorname{In} 0$, $\operatorname{In} 0$ is not defined $0 \cdot$ undefined?? $0 \cdot(-\infty)$ (doesn't mean we ever reach 0 or $-\infty), \underline{0.00000001 \cdot-100000000000}$
$\lim _{x \rightarrow 0+} \frac{\operatorname{In} x}{1 / x} \quad$ allowed by KCF

$\frac{-\infty}{\infty} \Rightarrow$ graphs!
L'Hopital's:
$\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 x^{-1-1}}$
$\lim _{x \rightarrow 0+} \frac{1 / x}{-1 x^{-2}} \Leftarrow$
$\operatorname{In} x$
$\frac{0}{0}$
$\frac{\infty}{\infty}$
$\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}} \Rightarrow \mathrm{kcf} \Rightarrow \lim _{x \rightarrow 0^{+}}\left(\frac{1}{x} \cdot \frac{-x^{2}}{1}\right)=\lim _{x \rightarrow 0^{+}} \frac{-x^{2}}{x}=\lim _{x \rightarrow 0^{+}}(-x)=-0=0$
$0(-\infty)$
0^{0}
example 9: $\lim _{x \rightarrow 0^{+}} x^{\boldsymbol{x}} \Rightarrow$ direct sub first: $0^{0} \ldots$... migth say $=0$ ($n o$)
$0.00001^{0.00001} \rightarrow 0.0000001^{0.0000001}$ for $x>0, x=e^{\ln x}$
recall $2=\mathrm{e}^{\ln 2}, x=e^{\ln x}$
$\lim _{x \rightarrow 0^{+}} e^{\ln x \cdot x} \mathrm{e}^{f(x)}$ is cont, so we can put limit in top
$e^{\lim _{x \rightarrow 0^{+}}(\ln x \cdot x)}=e^{\lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x}}=e^{0}=1$

$$
2=e^{\ln 2}
$$

$\lim _{x \rightarrow \infty} x^{1 / x} \quad x$ in the base: $x \rightarrow \infty, x \rightarrow \infty$

$$
\frac{1}{x}: x \rightarrow \infty, \frac{1}{x} \rightarrow 0 \quad \Rightarrow \infty^{0}
$$

$\lim _{x \rightarrow \infty} e^{\ln x \cdot \frac{1}{x}}$ (rewrite x as $\mathrm{e}^{\ln x}$) $\quad x=e^{\ln x}, x$
$e^{\lim _{x \rightarrow \infty}\left(\ln x \cdot \frac{1}{x}\right)}$ (put limit into exponent b/c e is cont.)
analyze exponent: $\frac{\ln x}{x} \quad \begin{aligned} & x \rightarrow \infty, \ln x \rightarrow \infty \\ & x \rightarrow \infty, x \rightarrow \infty\end{aligned} \quad$ recall: $2 \cdot \frac{1}{4}=\frac{2}{4}$
$e^{\lim _{x \rightarrow \infty} \frac{\ln x}{x}}$
$e^{\lim _{x \rightarrow \infty} \frac{1 / x}{1}}$
direct sub: $e^{\lim _{x \rightarrow \infty} \frac{1}{x}}=e^{0}=1$
summary: $\frac{0}{0}$ or $\frac{\infty}{\infty} \Leftarrow$ use L'Hopitals only!
if not, try to rewrite $f \cdot g=\frac{f}{1 / g}$, or $f \cdot g=\frac{g}{1 / f}$
takes forms like $0(\infty)$ and turns them into $\frac{\infty}{\infty}$
When we say $0 \cdot \infty$, don't take this to literally mean "zero" • actual infinity... one is going to 0 and the other is going to infinity $0.00001 \cdot 10000000000$ (tiny number \cdot massive number)
do not use the quotient rule.... $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$

$\lim _{x \rightarrow 0} \frac{g(x)}{38 e^{x}-38}$
direct sub:
$\frac{g(0)}{38 e^{0}-38}=\frac{0}{0}$ undefined
L'Hopital's:
$\lim _{x \rightarrow 0} \frac{g^{\prime}(x)}{38 e^{x}}$
direct sub now: $\frac{g^{\prime}(0)}{38 e^{0}}$
slope of tangent line top
$\frac{1}{38}$

Find
$\lim _{x \rightarrow 0} \frac{f(x)}{x}=-1 \quad \sigma^{8}-1$
$\lim _{x \rightarrow 0} \frac{f(x)}{3 e^{x}-3}=-1 / 3 \quad-\frac{1}{3}$
te
$\lim _{x \rightarrow 0} \frac{f(x)}{x}$
notice that $\lim _{x \rightarrow 0} f(x)=0$ from solid curved line the limit of x as x goes to 0 is also 0 .
so we have $\frac{0}{0}$
differentiate: $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{1}=\lim _{x \rightarrow 0} f^{\prime}(x)$
direct sub $=f^{\prime}(0)=$ slope of tangent line at $x=0$ $=-1$
$\lim _{x \rightarrow 0} \frac{f(x)}{3 e^{x}-3} \quad \frac{f(0)}{3 e^{0}-3}=\frac{0}{0} \Leftarrow$ undefined
L'Hopital: $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{3 e^{x}}$
direct sub= $\frac{f^{\prime}(0)}{3 e^{0}}=\frac{-1}{3}(-1$ from slope of tangent line $)$ at $\mathrm{x}=0$..dashed blue line)

