Take detailed notes. Make sure your face is visible on camera. Good question to ask: how can this next year be the most successful year of our lifes? Turn off your microphones please. Section 5.2/Logarithmic functions and their graphs: beginning at 9:40AM: exponential was $f(x) = a^x$, a > 0 and $a \neq 1$, and x is a real number! log functions: $f(x) = log_a(x)$, a = base, x=variable, log is short for logarithm, which just means exponent! $3^2 = 9$ exponential form becomes $2 = log_3(9)$ (log form) $2^{5} = 32$ base=2, exponent=5, value is 32 $5 = log_2(32)$ log form summary: If $a^{y} = x$, then $log_{a}(x) = y$ fancy for exponent! $log_{2}(4) = 2 \xrightarrow{\text{becomes in exponential form}} 2^{2} = 4$ example 1/page 391: $f(\mathbf{x}) = log_2(\mathbf{x})$ $f(4) = log_2(4) \Leftarrow 2$ raised to WHAT EXPONENT is 4? 2 \Leftarrow output! (4,2) $f(16) = log_2(16) \Leftarrow 2$ raised to what exponent is 16? $4 \Leftarrow$ output (16,4) $f(2) = log_2(2) \xrightarrow{\text{can rewrite as}} log_2(2^1) = 1$ point is (2, 1) logarithm=exponent!!! $f(1) = log_2(1) = log_2(2^0) = 0$ point is (1,0) $f(32) = log_2(32) \xrightarrow{\text{rewrite as } 2^5} log_2(2^5) = 5$ point is (32,5) $g(x) = log_4(x)$ $g(4) = log_{4}(4) \xrightarrow{\text{rewrite as } 4^{1}} log_{4}(4^{1}) = 1 \quad (4, 1)$ $g(16) = log_{4}(16) \xrightarrow{\text{rewrite 16 as 4}^{2}} log_{4}(4^{2}) = 2 \text{ point is } (4,2)$ When we have $log_a(a^b) = b(when \text{ the input can be written as } a^b$, the answer is b) $h(x) = log_{10}(x)$ $h(100) = log_{10}(100) \xrightarrow{100 \text{ is not 10, but it is } 10^2} log_{10}(10^2) = 2$, (100, 2) $h\left(\frac{1}{100}\right) = log_{10}\left(\frac{1}{100}\right) = log_{10}\left(100^{-1}\right) = log_{10}\left((10^{2})^{-1}\right) = log_{10}\left(10^{-2}\right) = -2, (1/100, -2)$ bases match: 10 and 10 doesn't work: $log_3(4^5)$ it's not 5 b/c 3 and 4 are different! equations between different forms: $y = log_2(x)$ (log form) \Rightarrow exponential form $\Rightarrow 2^y = x$ $y = log_{2}(x) \Rightarrow$ becomes $\Rightarrow 3^{y} = x$ example: $log_{10}(x)$ is usually written as $log(x) \Leftarrow$ base of 10 is dropped.on calcs. it's log (x) Does log(-10) make sense? no..b/c this says \log_{10} (-10) in exponential form: $10^{?} = -10?$ can't have this!! $log_{2}(-4)$ make sense? no b/c it's saying 2[?] =-4 can't be done!

for $\log_a (x)$, domain is x>0. interval form: $(0, \infty)$ base is a so true for any log function log(-10), $log_3(-27)$ give errors $log_2(4)$ works b/c 2² =4 $log_2(-4) = -4$

Properties of Logs: $log_a(1) = log_a(a^0) = 0$ (not true for a=0,but true for everything else) big rule: $a^{\log_a(x)} = x$ $log_{2}(1) = log_{2}(2^{0}) = 0$ $log_{3}(1) = log_{3}(3^{0}) = 0$ $2^{\log_2(8)} = 2^{\log_2(2^3)} = 2^3 = 8$ $log_{1/2}(1) = log_{1/2}(1/2)^0 = 0$ $3^{\log_3(27)} = 3^{\log_3(3^3)} = 3^3 = 27$ big rule: $log_a(a) = 1$ for any a $a^{\log_a(\mathbf{x})} = \mathbf{x}$ $log_{1/3}(1/3) = log_{1/3}(1/3)^1 = 1$ $log_{\sqrt{7}}(\sqrt{7})^1 = 1$ base is $\sqrt{7}$ $6^{log_6(20)} = 20$ $10^{\log_{10}(4.56)} = 4.56$ b/c both have 10 as the base! If it's $2^{\log_4(25)} \neq 25$ b/c 2 and 4 are not the same!! Log functions and exponential functions are inverse functions: $v = 2^{x}$ log form is $y = log_2(x)$ $y = log_2(1/2) = log_2(2^{-1}) = -1$ x = -1, $y = 2^{-1} = 1/2$, (-1, 1/2)(x,y) are switched! (1/2, -1) $y = log_{2}(1) = log_{2}(2^{0}) = 0, (1,0)$ x = 0: $y = 2^{0} = 1, (0, 1)$ (x, y) are switched! $y = log_2(2) = log_2(2^1) = 1$ x = 1: $y = 2^{1} = 2$, (1, 2) (x,y) are switched! (2, 1)So 2^{x} and $\log_{2}(x)$ are inverse functions b/c the x and y coords. get flipped. Graph of 2^x and $\log_2(x)$ to see the relationship between them: $log_{2}(x)$

on the other hand, ln(x-2) = ln(x-(+2)) (add 2 to each x)