Take detailed notes. Make sure your face is visible on camera.
Good question to ask: how can this next year be the most successful year of our lifes?
Turn off your microphones please.
Section 5.2/Logarithmic functions and their graphs:
beginning at 9:40AM:
exponential was $f(x)=a^{x}, a>0$ and $a \neq 1$, and x is a real number!
log functions:
$f(x)=\log _{a}(x), \quad a=$ base, $x=$ variable, log is short for logarithm, which just means exponent! $3^{2}=9$ exponential form becomes $2=\log _{3}(9)$ (log form)
$\mathbf{2}^{5}=32 \quad$ base $=2$, exponent $=5$, value is 32
$5=\log _{2}(32)$ log form
$\log _{2}(4)=\mathbf{2} \xrightarrow{\text { becomes in exponential form }} 2^{2}=4$
summary: If $\boldsymbol{a}^{y}=x$, then $\log _{\mathbf{a}}(x)=y$
fancy for exponent!
example 1/page 391:
$f(x)=\log _{2}(x)$
$f(4)=\log _{2}(4) \Leftarrow 2$ raised to WHAT EXPONENT is $4 ? 2 \Leftarrow$ output! $(4,2)$
$f(16)=\log _{2}(16) \Leftarrow 2$ raised to what exponent is 16 ? $4 \Leftarrow$ output $(16,4)$

$$
f(2)=\log _{2}(2) \xrightarrow{\text { can rewrite as }} \log _{2}\left(2^{1}\right)=1 \text { point is }(2,1)
$$

$$
f(1)=\log _{2}(1)=\log _{2}\left(2^{0}\right)=0 \text { point is }(1,0)
$$

$$
f(32)=\log _{2}(32) \xrightarrow{\text { rewrite as } 2^{5}} \log _{2}\left(2^{5}\right)=5 \text { point is }(32,5)
$$

$$
g(x)=\log _{4}(x)
$$

$$
g(4)=\log _{4}(4) \xrightarrow{\text { rewrite as } 4^{1}} \log _{4}\left(4^{1}\right)=1 \quad(4,1)
$$

$$
g(16)=\log _{4}(16) \xrightarrow{\text { rewrite } 16 \text { as } 4^{2}} \log _{4}\left(4^{2}\right)=2 \text { point is }(4,2)
$$

When we have $\log _{a}\left(a^{b}\right)=\mathrm{b}$ (when the input can be written as a^{b}, the answer is b)

$$
\begin{aligned}
& h(x)=\log _{10}(x) \\
& h(100)=\log _{10}(100) \xrightarrow{100 \text { is not } 10, \text { but it is } 10^{2}} \log _{10}\left(10^{2}\right)=\mathbf{2},(100,2) \\
& h\left(\frac{1}{100}\right)=\log _{10}\left(\frac{1}{100}\right)=\log _{10}\left(100^{-1}\right)=\log _{10}\left(\left(10^{2}\right)^{-1}\right)=\underbrace{\log _{10}\left(10^{-2}\right)}=-2,(1 / 100,-2)
\end{aligned}
$$

bases match:
10 and 10
doesn't work: $\log _{3}\left(4^{5}\right)$ it's not $5 \mathrm{~b} / \mathrm{c} 3$ and 4 are different!
equations between different forms:
$y=\log _{2}(x)(\log$ form $) \Rightarrow$ exponential form $\Rightarrow 2^{y}=x$
$y=\log _{3}(x) \Rightarrow$ becomes $\Rightarrow 3^{y}=x$
example: $\log _{10}(x)$ is usually written as $\log (x) \Leftarrow$ base of 10 is dropped..on calcs. it's $\log (x)$
Does $\log (-10)$ make sense? no.b/c this says $\log _{10}(-10)$ in exponential form: $10 ?=-10$? can't have this!!
$\log _{2}(-4)$ make sense? no b/c it's saying $2^{?}=-4$ can't be done!
for $\log _{a}(x)$, domain is $x>0$. interval form: $(0, \infty)$
base is a..so true for any log function $\log (-40), \log _{3}(-27)$...give errors
$\log _{2}(4)$ works b/c $2^{2}=4$
$\log _{2}(-4) \cdots 2^{2}=-4$

Properties of Logs:
$\log _{a}(1)=\log _{a}\left(a^{0}\right)=0$ (not true for $a=0$, but true for everything else)
$\log _{2}(1)=\log _{2}\left(2^{0}\right)=0$
$\log _{3}(1)=\log _{3}\left(3^{0}\right)=0$
$\log _{1 / 2}(1)=\log _{1 / 2}(1 / 2)^{0}=0$
big rule: $\log _{a}(a)=1$ for any a

$$
\begin{aligned}
& \log _{1 / 3}(1 / 3)=\log _{1 / 3}(1 / 3)^{1}=1 \\
& \log _{\sqrt{7}}(\sqrt{7})^{1}=1 \text { base is } \sqrt{7}
\end{aligned}
$$

big rule: $a^{\log _{a}(x)}=x$

$$
\begin{aligned}
& 2^{\log _{2}(8)}=2^{\log _{2}\left(2^{3}\right)}=2^{3}=8 \\
& 3^{\log _{3}(27)}=3^{\log _{3}\left(3^{3}\right)}=3^{3}=27
\end{aligned}
$$

$$
a^{\log _{a}(x)}=x
$$

$$
6^{\log _{6}(20)}=20
$$

$10^{\log _{10}(4.56)}=4.56 \mathrm{~b} / \mathrm{c}$ both have 10 as the base!
If it's $2^{\log _{4}(25)} \neq 25$ b/c 2 and 4 are not the same!!

Log functions and exponential functions are inverse functions:
$y=2^{x}$
$x=-1, y=2^{-1}=1 / 2, \quad(-1,1 / 2)$
\log form is $y=\log _{2}(x)$

$$
y=\log _{2}(1 / 2)=\log _{2}\left(2^{-1}\right)=-1
$$

$$
(1 / 2,-1)
$$

$$
y=\log _{2}(1)=\log _{2}\left(2^{0}\right)=0,(1,0)
$$

(x, y) are switched!
$x=1: y=2^{1}=2,(1,2)$ (x, y) are switched!

$$
\begin{equation*}
y=\log _{2}(2)=\log _{2}\left(2^{1}\right)=1 \tag{2,1}
\end{equation*}
$$

So 2^{x} and $\log _{2}(x)$ are inverse functions b / c the x and y coords. get flipped.
Graph of 2^{x} and $\log _{2}(x)$ to see the relationship between them:

summary again: 2^{x} has domain $(-\infty, \infty)$ and range $(0, \infty)$

$$
\log _{2}(x) \text { has domain }(0, \infty) \text { and range }(-\infty, \infty)
$$

So points flip, asymptotes flip and domains and ranges flip.
We have bases like e, as in $y=e^{x}$, where $e=2.718$
For $\mathrm{y}=\mathrm{e}^{x}$, the inverse is $\log _{e}(\mathrm{x})$ but commonly this is written as $\operatorname{In}(x)$
In (x) read as "natural log function".
graphs of e^{x} and $\ln (x)$: $y=e^{x}$

gap is there..just zoom in more!!

When we graph $\mathrm{y}=\ln (\mathrm{x})$, do NOT cross the line $x=0$ (y axis).

Transforming the In function:
$y=\ln (x-1)(-1$ moves the graph of $\ln (x) 1$ unit to the right, NOT left $) x=1$ is the VA domain: \ln (expression), expression>0 and solve for variable:
$x-1>0$
$x>1$ interval form: $(1, \infty)$
$V A$ is $\mathrm{x}=1 \mathrm{~b} / \mathrm{c} \ln (1-1)=\ln (0)=$ undefined!
B / c we're doing a horizont shift, no range change! just 1 to each x, so $(1,0)$ becomes $(2,0)$ So VA of $\ln (x)$ gets shifted from $x=0$ to $x=1$.
for $\ln (x-1)$
$\ln x$

example: $\ln (x+2) \ldots \ln (0)$ IS NOT DEFINED!
$x+2>0$ and never $x \neq 2 \geq 0$ can't have $=$ in \geq.
$x>-2 \ldots$ interval form $(-2, \infty)$ (changed relative to $\ln (x)$)
range $=(-\infty, \infty)$ (not affected by horizontal shifts)
$V A: \ln (-2+2)=\ln (0)=$ undefined!
$V A: x=-2$
$(1,0)$ is a point on $\ln (x)$.
subtract 2 from x :
$(1-2,0)=(-1,0)$ on $\ln (x+2)$
for $\ln (x+2)$, domain $=(-2, \infty)$

$$
\text { range }=(-\infty, \infty)
$$

$\ln (x+2)$ it's really $\ln (x-(-2))$
so subtract 2 from $x($ not add 2 to x)

on the other hand, $\ln (x-2)=\ln (x-(+2))($ add 2 to each $x)$

