Please take very detailed notes as usual. Make sure your camera is on. I will call attendance at some point. If you're not here to say "here", you will be marked absent. Turn off your microphones so we don't have background sound.

Section 5.3/Properties of Logs: Starting at 9:38..sent link around 9:27 am.
How to find things like $\log _{3}(25)$ or $\log _{4}(18)$ or $\log _{1 / 2}(34)$ not easy to find!!

$$
3^{x}=25 \quad 4^{x}=18 \quad\left(\frac{1}{2}\right)^{x}=34
$$

ex1
change of base formula: most calculators have $\log (x)$ and $\ln (x)$.
$\log _{a}(\mathrm{x})=\frac{\ln (\mathrm{x})}{\ln (a)}$ (simpler b/c In is a key on most calcs)
$\log _{4}(25)$ hard to type into a calculator..
$=\frac{\ln 25}{\ln 4}$ (these are easy to type in)
b) $\log _{2}(12)$ (hard to type in on a calc.)

$$
\begin{aligned}
& =\frac{\ln 12}{\ln 2} \text { (easy key presses) } \\
& =3.5850
\end{aligned}
$$

$=2.3219$
visual evidence for why this is true:

$$
\log _{3}(36)\left(3^{x}=36 ? \text { hard }\right)
$$

hard to type in
$\log _{3}(36)=\frac{\ln 36}{\ln 3}$

$$
\log _{2}(x)
$$

$$
\text { supposedly } \frac{\ln (x)}{\ln (2)} ?
$$

we have two graphs but they are overlapping perfectly!!
so $\log _{2}(\mathrm{x})=\frac{\ln x}{\ln 2}$
rule1
Properties of logs: $\log _{a}(u \cdot v)=\log _{a}(u)+\log _{a}(v)(\log$ of a product becomes the sum of the logs)

$$
\log _{a}\left(\frac{u}{v}\right)=\log _{a}(u)-\log _{a}(v)(\log \text { of a quotient becomes the difference of the logs) }
$$

$$
\log _{a} u^{n}=n \cdot \log _{a} u \text { (bring } n \text { down..power rule for logs) }
$$

These rules go from LHS to RHS or RHS to LHS, as needed! Rules are bidirectional. example; is $\log _{2}(2 \cdot 4)$ the same as $\log _{2}(2)+\log _{2}(4)$? (simple example of rule1)

$\log _{2}(8)$	$1+2$	suggests that $\log _{2}(2 \cdot 4)=\log _{2}(2)+\log _{2}(4)$
3	equal	

example: $\ln 6=\ln (2 \cdot 3)=\ln (2)+\ln (3)$ (book example)

$$
\begin{array}{rlrl}
\ln \left(\frac{2}{27}\right) & =\ln (2)-\ln (27) & \text { quotient to difference rule } \\
& =\ln 2-\ln \left(3^{3}\right) \quad \text { rewriting } 27 \text { as } 3^{3} \\
& =\ln 2-3 \ln 3(p \text { ut the } 3 \text { down in front of } \ln 3 \text { by power rule })
\end{array}
$$

example 4/book: $\log _{5} \sqrt[3]{5} \xrightarrow{\text { re write as } 5^{1 / 3}} \log _{5}\left(5^{1 / 3}\right) \xrightarrow{\text { bring } 1 / 3 \text { down by power rule }} \frac{1}{3} \log _{5}(5)$

$$
\xrightarrow{\log _{5}(5)=1} \frac{1}{3} \cdot 1=\frac{1}{3} \text { (answer) }
$$

recall: $\log _{e}(x)=\ln (x) . \quad \log _{e}(e)=1 \Leftarrow$ using In now... Ine $=1$
In $e^{6} \Rightarrow$ bring 6 down $\Rightarrow 6$ Ine \Rightarrow Ine is $1 \Rightarrow 6 \cdot 1=6$ answer
$\operatorname{In} e^{6}-\ln e^{2}=6 \ln e-2 \ln e=6 \cdot 1-2 \cdot 1=6-2=4$ answer (red parts are the changed ones)
our own examples (more) $\ln \left(\frac{2 \cdot 3}{5}\right) \Rightarrow \ln (2 \cdot 3)-\ln (5) \quad$ (apply quotient to difference)

$$
\Rightarrow \ln (2)+\ln (3)-\ln (5)(\text { apply product to sum rule })
$$

$$
\begin{aligned}
\ln (\sqrt{x} \bullet z) & =\ln \sqrt{x}+\ln z & & (\text { product to sum rule for logs) } \\
& =\ln x^{1 / 2}+\ln z & & (\text { rewrite } \sqrt{\ldots} \text { as } 1 / 2) \\
& =\frac{1}{2} \ln x+\ln z & & (\text { bring } 1 / 2 \text { down })
\end{aligned}
$$

expanded form
example 5 in book: $\log _{4}\left(5 x^{3} y\right) \quad$ write as individual logs.(expand)

$$
\begin{aligned}
& =\log _{4}\left(5 \cdot x^{3} \cdot y\right) \quad \text { we have a product inside the parenthesis } \\
& =\log _{4}(5)+\log _{4}\left(x^{3}\right)+\log _{4}(y) \quad \text { multiplications become additions } \\
& =\log _{4}(5)+3 \log _{4}(x)+\log _{4}(y) \quad \text { bring } 3 \text { down }
\end{aligned}
$$

$5, x$ and y are as simple as possible now, so stop!
(b) $\operatorname{In} \frac{\sqrt{3 x-5}}{7} \xrightarrow{\text { convert to difference }} \ln (\sqrt{3 x-5})-\ln (7) \xrightarrow{\text { rewrite root as } 1 / 2} \ln (3 x-5)^{1 / 2}-\ln 7$

$$
\xrightarrow{\text { bring } 1 / 2 \text { down }} \frac{1}{2} \ln (3 x-5)-\ln 7 \text { (stop) }
$$

stop means no other log rules are there to be applied!
these are NOT valid rules:
$\ln (x-y)$ might say $\ln (x)=\ln (y)$ (incorrect)
$\operatorname{Ln}(x+y)$ might say $\ln (x)+\ln (y)$ incorrect!!
not valid: $\ln \left(\frac{x}{y}\right)$ might be tempted to do $\frac{\ln (x)}{\ln (y)}$ (incorrect)
example 6: condensing log. expressions:
product to sum, quotient to different, power rule..can all be applied in the reverse order!! that's called "condensing"
$\frac{1}{2} \ln x \Rightarrow$ put $1 / 2$ back up $\Rightarrow \ln x^{1 / 2} \Rightarrow$ rewrite as root $\ln \sqrt{x}$ $2 \ln x+3 \ln y \Rightarrow$ put 2 and 3 in exponents $\Rightarrow \ln x^{3}+\ln y^{3} \Rightarrow$ we have a sum, so make a product

$$
\Rightarrow \ln \left(x^{3} \bullet y^{3}\right) \Leftarrow \text { condensend version }
$$

book: $\frac{1}{2} \log x+3 \log (x+1)$
$\xrightarrow{\text { power rule backwards }} \log x^{1 / 2}+\log \left[(x+1)^{3}\right]$
$\xrightarrow{\text { rewrite as root }} \log \sqrt{x}+\log (x+1)^{3}$
$\xrightarrow{+ \text { becomes a single log }} \log \left(\sqrt{x} \cdot(x+1)^{3}\right)$
book example:
$2 \ln (x+2)-\ln x$
$\xrightarrow{\text { power rule backwards on } 2} \ln (x+2)^{2}-\ln x$
$\xrightarrow{\text { - becomes division }} \ln \left[\frac{(x+2)^{2}}{x}\right]$
stop..no other log rules left to apply!!
book example $\frac{1}{3}\left[\log _{2}(x)+\log _{2}(x+1)\right]$
addition to product first: $\frac{1}{3}\left[\log _{2}(x(x+1))\right]$
put $1 / 3$ in exponent: $\log _{2}[x(x+1)]^{1 / 3}$
rewrite in radical form: $\log _{2} \sqrt[3]{x(x+1)}$ (stop.no other rules left to apply)
$\operatorname{In}(u v)=\operatorname{In} u+\operatorname{In} v \quad, \quad \ln \left(\frac{u}{v}\right)=\operatorname{In} u-\operatorname{In} v \quad, \operatorname{In} u^{n}=n \cdot \ln u$
change of base $=\log _{a}(x)=\frac{\ln x}{\ln a}$
These rules are BIDIRECTIONAL, so this means, as example, that $\ln (u v) \Rightarrow \ln u+\ln v$ or, if needed, $\ln (u)+\ln (v) \Rightarrow \ln (u v)$
recall : $x^{a} x^{b}=x^{a+b}$..it's not just from Left to RIGHT..it's from RIGHT To left also!! two major ops: condensing..so making smaller expanding..making bigger
rules apply to
$\log _{a}(x), \ln x=\log _{e}(x)$ where $\mathrm{e}=2.718$ simple illustration of $\operatorname{In}\left(\frac{u}{v}\right)=\ln (u)-\ln (v)$ (u and v are just some expressions..)

$$
\begin{array}{ll}
& \log _{2}\left(\frac{8}{2}\right)=? \\
=\log _{2}(8)-\log _{2}(2) \\
= & \log _{2}(4) \\
=2 & =3-1 \\
2 & =2
\end{array}
$$

Shows that $\log _{2}\left(\frac{8}{2}\right)$ really is the same as $\log _{2}(8)-\log _{2}(2)$
question 24 in book: $\log _{2}\left(4^{2} \cdot 3^{4}\right)$

$$
\log _{2}\left(4^{2}\right)+\log _{2}\left(3^{4}\right)
$$

power rule: $2 \log _{2} 4+4 \log _{2} 3$
addition of two separate logs!
$2 \cdot 2+4 \log _{2}(3)$
$\underbrace{4+4 \log _{2}(3)}\left(\log _{2} 3\right.$ is not a clean value..it's asking $2^{x}=3 . . x$ is messy)
leave this
question 36: $\log _{3}(-27)$..domain of any of the form $\log _{a}(x)$ is $x>0$ has no value!=DNE=does not exist=undefined!

If we have In (expression)
If ultimately expression $\leq 0, \ln$ (expression) is NOT defined!

$$
\ln (x-2), \ln (\sqrt{x+4}), \ln \left(x^{2}-5\right)
$$

condense: $\frac{1}{2} \ln x-2 \ln (y)$ (notice the - in the middle)
carry the negative with the 2 and leave a $+\frac{1}{2} \ln x+\ln y^{-2}$
apply power rule to $1 / 2: \ln x^{1 / 2}+\ln y^{-2}$
sum to product: $\ln \left(x^{1 / 2} \cdot y^{-2}\right)$
1/2 to root form: $\operatorname{In}\left(\sqrt{x} \cdot y^{-2}\right)$
rewrite with a positive exponent: $\ln \frac{\sqrt{x}}{y^{2}} \Leftarrow$ this is NOT $\frac{\ln \sqrt{x}}{\ln y^{2}}$

$$
\text { this is equivlaent to } \ln \left(\frac{\sqrt{x}}{y^{2}}\right)
$$

how to deal with negative in middle:
$\ln x-2 \ln y \Rightarrow$ carry the minus with the $2 \Rightarrow \ln x+\ln y^{-2}=\ln \left(x \cdot y^{-2}\right)=\ln \left(\frac{x}{y^{2}}\right)$
or...leave the negative:
$\operatorname{In} x-2 \operatorname{In} y \Rightarrow$ carry only + ive $2 \Rightarrow \ln x-\ln y^{2} \Rightarrow$ apply difference to quotient $\Rightarrow \operatorname{In} \frac{x}{y^{2}} \Leftarrow$ same as above caution: $\operatorname{In} x-\ln y^{2}$..don't turn into $\frac{\ln x}{\ln y^{2}}$ (not valid!)

