An investment's value is given by $A(t)=9000 \cdot e^{0.045 t}$. form $A(t)=P e^{r t}$., $P=9000, r=0.045, t=$ variable
What's the value at $t=1: A(1)=9000 \cdot e^{0.045 \cdot 1} \xrightarrow{\text { in words..how much money in } 1 \text { year }} 9414.25$
How long for the investment to double? P goes from 9000 to 18000.
$18000=9000 \cdot e^{0.045 \cdot t}$
divide by $9000: \frac{18000}{9000}=\frac{9000}{9000} e^{0.045(t)}$

$$
2=e^{0.045 \cdot t}
$$

take \ln of both sides: $\ln 2=\ln \left(e^{0.045 \cdot t}\right)$
power rule for logs: $\ln 2=0.045 t \cdot \operatorname{In} e$
Ine = 1

$$
\ln 2=0.045 t
$$

divide by $0.045: \quad \frac{\ln 2}{0.045}=t$
calculator work.... $t=$ finish up on calculator on your own!
more generally:
model:
If P turns into $2 P$, we get :
repalce A with $2 P: 2 P=P e^{r t}$
divide P away: $2 \frac{P}{P}=\frac{P}{P} e^{r t}$
simplify: $2=\mathrm{e}^{r t}$
solve for t :
take $\ln : \ln 2=\ln e^{r t}$
bring rt down: $\ln 2=r t \cdot \operatorname{Ine}$
$\ln e=1 \quad \ln 2=r t$
$\Leftarrow \mathrm{t}$ is not special
divide by $\mathrm{r}: \frac{\ln 2}{r}=t$
template..just plug numbers in
q2: amount of money in an investment is modeled by $\mathrm{A}(\mathrm{t})=500(1.0291)^{t}$
What is the doubling time for the investment?
financial independence!!
template:
We have P become 2P:
$2 P=P a^{t}$, a=base, $\mathrm{P}=$ investment,
$2 P$ is double the investment
$2 P=P a^{t}$
divide by $P: 2 \frac{P}{P}=\frac{P}{P} a^{t}$
simplify: $2=a^{t}$
take $\ln : \ln 2=\ln a^{t}$
bring t down: $\ln 2=t \cdot \operatorname{In} a$
divide by Ina : $\frac{\ln 2}{\ln a}=\boldsymbol{t}$

$$
500=P, 1000=2 P
$$

replace LHS wiht 2P: $1000=500 \cdot 1.0291^{t}$
divide by 500 : $\frac{1000}{500}=\frac{500}{500} \cdot 1.0291^{t}$
simplify $\quad 2=1.0291^{t}$
take $\ln : \quad \ln 2=\ln \left(1.0291^{t}\right)$
bring t down: $\operatorname{In} 2=t \cdot \ln (1.0291)$
divide by \ln..: $\frac{\ln 2}{\ln (1.0291)}=\boldsymbol{t}$

$$
t \approx \frac{\ln 2}{\ln 1.0291}=24.16 \text { years!! }
$$

start investing now because things take a long time ..
most general form:
It's not just P becoming 2P. Let's say P turns into $b P$. b is some number that multiplies $P . b=1 / 2, b=.25, b=7$
$b P=P a^{t}$
divide by $P: b \cdot \frac{P}{P}=\frac{P}{P} a^{t} \quad b=3(3$ times $P)$
simplify: $b=a^{t} \quad a=$ base $=1.5$
take $\ln : \ln b=\ln a^{t}$
bring t down: $\ln b=t \ln a$

$$
t=\frac{\ln 3}{\ln 1.5}=2.71
$$

divide by Ina: $\frac{\ln b}{\ln a}=t$
q3: You deposit 2600 in an account earning 7% interest with quarterly compounding. How long will it take this investment to triple?
$A=P(1+r / n)^{n t}$ (discrete compounding formula)
$P=$ principal, $r=r a t e, n=n u m b e r$ of times we compound per year, $r / n=t a x$ rate at end of each period, $n t=t o t a l$ number of times we compound
$P=2600$, triple means $3 P=3 \cdot 2600$ (leave in this form so it's easier to cancel)
quarterly means $n=4, r=0.07$. we don't know t !
$3 \cdot 2600=2600\left(1+\frac{0.07}{4}\right)^{4 \cdot t}$
cancel off 2600: $3 \cdot \frac{2600}{2600}=\frac{2600}{2600}\left(1+\frac{0.07}{4}\right)^{4 \cdot t} \quad a b c$ (product of three things)
$3=\left(1+\frac{0.07}{4}\right)^{4 \cdot t}$ (ab)c
a(bc)
$a c \cdot b$
bc•a
take \ln of both sides: $\operatorname{In} 3=\ln \left(1+\frac{0.07}{4}\right)^{4 t}$

$$
\ln 3=4 t \cdot \ln \left(1+\frac{0.07}{4}\right)
$$

$$
\text { divide by } \ln (1+0.07 / 4) \cdot 4: \quad \frac{\ln 3}{4 \ln (1+0.07 / 4)}=t
$$

$$
t=\frac{\ln 3}{4 \cdot \ln (1+0.07 / 4)}=15.8 \text { years!! }
$$

more generally:
We have our amount P become bP. ($b=2, b=3, b=4, \ldots)$
P becomes bP
replace A with $\mathrm{bP}: \quad b P=P\left(1+\frac{0.07}{4}\right)^{4 \cdot t}$
divide P away: $b \frac{P}{P}=\frac{P}{P}\left(1+\frac{0.07}{4}\right)^{4 \cdot t}$

$$
b=\left(1+\frac{0.07}{4}\right)^{4 \cdot t}
$$

solve for $\mathrm{t}: \ln (b)=\ln \left(1+\frac{0.07}{4}\right)^{4 t}$
bring 4t down by power rule for logs: $\ln b=4 t \cdot \ln (1+0.07 / 4)$
regroup 4 with $\operatorname{In} . . . \operatorname{In} b=t \cdot 4 \operatorname{In}(1+0.07 / 4)$
divide by $4 \ln (1+.07 / 4) \quad \frac{\ln b}{4 \ln (1+1.07 / 4)}=t$
most general form: P becomes bP, we keep r, keep n, keep P, and solve for t :

$$
b P=P\left(1+\frac{r}{n}\right)^{n \cdot t} \quad \text { solve for } t
$$

cancel off $P: b \frac{P}{P}=\frac{P}{P}\left(1+\frac{r}{n}\right)^{n \cdot t}$
derivation of formula ..template!
discrete compounding: $A=P(1+r / n)^{n t}$
cont. compounding: $A=P e^{r t}, \quad e$ is derived from letting n go to infinity in

$$
1\left(1+\frac{1}{n}\right)^{n \cdot 1} \quad P=1, r=1, t=1
$$

annunity formula: (book) $\quad A=\frac{P\left((1+i / 1)^{n}-1\right)}{i / 1}, i=$ interest rate, $\mathrm{n}=$ number of payments,

