Math 200 notes $11 / 13 / 2023$. Please put away computers and phones and take detailed notes.
Section 6.1/Interest:
Review of percents/decimal and fractions:

$$
\begin{aligned}
& 1 \%=\frac{1}{100}=0.01, \quad 12 \%=\frac{12}{100}=.12 \quad, 0.3 \%=\frac{0.3}{100}=0.003 \\
& \%=1 \%=\frac{1}{100} \quad 0.35 \xrightarrow{35 \text { one-hundreths }} \frac{35}{100}=35 \% \quad 1.25 \xrightarrow{\text { one and } 25 \text { one hundreths }} \frac{125}{100}=125 \% \\
& 0.005 \rightarrow \text { five one-thousdanths } \\
& 0.0025=\frac{25}{10000}=\frac{1}{400}=\frac{1}{4 \cdot 100}=\frac{0.25}{100}=0.25 \% \quad 0.0025 \Rightarrow \text { float decimal } 2 \text { places right and percent symbol } \Rightarrow 0.25 \%
\end{aligned}
$$

example 1/page 294: (a) Find 12% of 80 $x=\mathbf{0 . 1 2} \cdot 80=9.6$
(b) What percent of 40 is 18 ?
$x \cdot 40=18$
$x=\frac{18}{40}=0.45=45 \%$
or $\frac{18}{40}=\frac{9}{20} \cdot \frac{5}{5}=\frac{45}{100}$
(c) 8 is 15% of what number?
$8=0.15 \cdot x$
$\frac{8}{0.15}=x$
$53.33=x$

Example 2: Computing state income tax: Illinois guy has a base income, after adjustments for deductions, of 18000.
State income tax on this is 3%. What tax is due?
tax $=3 \%$ of $18000=0.03 \cdot 18000=\$ 540$
Think and Grow Rich, Napoleon Hill

Defintion: Simplest interest: $I=P r t \quad P=$ principal, $r=r a t e, t=$ time
Simple interest is interest computed on the principal for the entire preiod it is borrowed.
Total amount= Principal + Interest $=P \cdot 1+P r t=P(1+r t) \Leftarrow$ future value
Example 3: Computing Interest and the Amount Due on a Loan: A loan of 250 is made for 9 months at a simple rate of 10% per annum. What is the interest charge? What amount is due after 9 months?

The Intelligent Investor
$I=P r t=250 \cdot 0.1 \cdot \frac{9}{12}=\$ 18.75$. Total to pay back $=250+18.75=268.75$
Example 4: A person borrow $\$ 1000$ for a period of 6 months. What simple interest rate is being charged if the amount A that must be repaid after 6 months is 1045? $A=P+P r t$
$A=1045, \quad P=1000, \quad t=6 / 12$ (not 6..fraction of a year..out of 12), $r=$?

Example 5/Computing the Amount Due on a LoanA company borrows $1,000,000$ for 1 month at a simple interest rate of 9% per annum.
Company has to pay back the borrowed
amount of 1,000,000 and 7,500 more in interest.
Stock market, over looooong periods of time, pays an average of 9 to 11 percent.
Two ways to make money: exchange your time for money or PROFIT! How much must the company pay back at the end of 1 month?

$$
\begin{aligned}
& A=P+P r t \\
& A=P(1+r t) \\
& A=1000000\left(1+0.09 \cdot \frac{1}{12}\right) \\
& A=1000000\left(1+\frac{0.09}{12}\right) \quad \frac{0.09}{12}=0.0075 \text { (effective rate) } \\
& A=1000000(1+0.0075) \\
& A=\$ 1,007,500
\end{aligned}
$$

Example 6: A borrower signs a note for a discounted loan and agrees to pay the lender $\$ 1000$ in 9 months at a rate of 10%. How much does the borrower receive? $r=$ per annum rate of interest, $t=$ time in years, $L=a m o u n t ~ o f ~ t h e ~ l o a n ~$

$$
\begin{aligned}
& R=\text { proceeds } \quad L=1000, r=10 \%=0.1,9 \text { months }=9 / 12 \\
& \mathrm{R}=L-L r t=L(1-r t) \\
& R=1000\left(1-0.1 \cdot \frac{9}{12}\right)=1000(1-0.075)=1000(0.925)=\$ 925
\end{aligned}
$$

Summary: Give the borrower $\$ 925$ today.
Example 7: What simple interest is the borrower in example 6 paying on the 925 that was borrowed for 9 months and paid back in the amount of 1000 ? $A=P+P r t$

$$
1000=925+925 r \cdot \frac{9}{12} \Rightarrow 1000-925=925 \cdot r \cdot \frac{9}{12} \Rightarrow 75=\frac{925 \cdot 9}{12} r \Rightarrow 75=693.75 r \Rightarrow \frac{75}{693.75}=r \Rightarrow r=0.108108 \Rightarrow r=10.81 \%
$$

Example 8: Treasury Bills (T-Bills) are short-term securities issued by the Federal Reserve. The bills do not specify a rate of interest. The are sold at public auction with financial institutions making competitive bids. For example, a financial institution may bid 982,400 for a 3-month, $\$ 1$ million treasury bill. At the end of the three months the institution receives $\$ 1$ million and the cost of the T-Bill. This is an example of a discounted loan.

How much should a bank bid on a 6-month, 500,000 (500k, k=kilo) treasury bill if it wants a $.25 \%$ discounted rate of interest?

$$
\begin{array}{rlr}
\mathrm{R} & =L(1-r t) & 0.25 \%=\frac{0.25}{100}=0.0 \\
R & =500000\left(1-0.0025 \cdot \frac{6}{12}\right), \quad L=500000, r=0.25 \%, t=\frac{6}{12} \quad \text { financial instruments } \\
& =500000(1-0.00125) & \\
& =500000(0.99875) & \\
& =499,375 \text { The bank should bid } \$ 499,375 \text { if it wants to earn a rate of } .25 \% . \text { (book says } 0025 \% \text {) }
\end{array}
$$

