Please be sure to take detailed notes. The same rules apply as always.
Perhaps a good question: how can the next year of your life be the most successful and amazing ever ?
Please put your cameras on so I can be sure you're in class.
Section 6.2/Compund Interest:

A $=P\left(1+\frac{r}{n}\right)^{n t} \Leftarrow$ discrete compounding formula
$A=P e^{r t} \Leftarrow$ continuous compounding formula

Present Value: "time value of money" refers to the present value of money. the present value of A dollars
to be received at a future date is the principal thta you would need to invest now so as to have A dollars in the future at time t .
$A=P(1+r / n)^{n t}, P=$ principal now
divide both sides by $(1+r / n)^{n t}$

$\frac{A}{(1+r / n)^{n t}}=P \frac{(1+r / n)^{n t}}{(1+r / n)^{n t}}$	recall that $a^{-n}=\frac{1}{a^{n}}$	$a^{-n} \xrightarrow{\text { go to }} \frac{1}{a^{n}}$
$\frac{A}{(1+r / n)^{n t}}=P$	$\frac{1}{a^{n}} \xrightarrow{\text { go to }} a^{-n}$	

$$
a^{-n}=\frac{1}{a^{n}}
$$

$$
a^{-n} \xrightarrow{\text { go to }} \frac{1}{a^{n}}
$$

$$
\frac{1}{a^{n}} \xrightarrow{\text { go to }} a^{-n}
$$

$$
A(1+r / n)^{-n t}=P
$$

present value formula
cont. compound interest:

$$
A=P e^{r t}
$$

$$
\text { divide by } \mathrm{e}^{r t}
$$

$$
\frac{A}{e^{r t}}=P \frac{e^{r t}}{e^{r t}}
$$

$$
\frac{A}{e^{r t}}=P
$$

$$
A e^{-r t}=P
$$

present value
example 6/book: present value of 10,000 :
to get 10,000 in 2 years at 4% per annum, how much to invest
(a) annual compounding: $\mathrm{n}=1$:
$P=10000\left(1+\frac{0.04}{1}\right)^{-2 \cdot 1}=10000(1+0.04)^{-2}=10000(1.04)^{-2}=\$ 9245.56$
To get 10,000 in 2 years at 4% with annual compounding, invest $\$ 9245.56$ today.
(c) daily compounding: $n=365$ (calculate interest at end of each day)
$P=10000(1+0.04 / 365)^{-365 \cdot 2}=10000(1+0.04 / 365)^{-730}=\$ 9231.20$
Invest $\$ 9231.20$ today to get 10,000 in 2 years using the values above!
(d) conti. compounding:
$P=A e^{-r t}=10,000 e^{-0.04 \cdot 2}=\$ 9231.16$
We're going backwards in values...now $\mathrm{Ae}^{-r t}$ gives us the SMALLEST amount to be invested today.
$9231.16<9231.20<9245.56$ (best investing option is cont. compounding)

Example 7: Computing the value of a zero-coupon bond:
A zero-coupon(non-interest bearing) bond can be redeemed in 10 years for $\$ 1000$. How much should you be willing to pay for it now if you want a return of
(a) 5% compounding monthly:
what is the present value of $\$ 1000$?
$r=5 \%=0.05, t=10, n=12$
$P=A\left(1+\frac{r}{n}\right)^{-n t}=1000\left(1+\frac{0.05}{12}\right)^{-10 \cdot 12}=1000\left(1+\frac{0.05}{12}\right)^{-120}=\$ 607.16$
You should be willing to pay $\$ 607.16$ for the bond. (company bonds and government bonds)
BOND= fancy for "I owe you".
(b) cont. case: $A=\$ 1000, r=0.04, t=10$: (book says use 4\%)
$P=1000 e^{-0.04 \cdot 10}=\$ 670.32$
(c) $P=1000 e^{-0.05 \cdot 10}=606.53$

Comparing (a) an (c) says (c) is better in that it's slighly less we have to invest today. Comparing (a) and (c) b/c they have the same values.
example 8: Rate of interest required to double an investment:
What annual rate of interest compounded annually should you seek if you want to double your investment in 5 years?
$A=P\left(1+\frac{r}{n}\right)^{n t}$ (not using -nt here)
$\mathrm{n}=1, t=5$, double your investment means P becomes $2 \mathrm{P}=\mathrm{A}$
$2 P=P\left(1+\frac{r}{1}\right)^{1.5} \quad$ (replace A with $2 \mathrm{P}, \mathrm{n}$ with $1, \mathrm{t}$ with 5)
divide P away:
$2 \frac{P}{P}=\frac{P}{P}(1+r)^{5}$
$2=(1+r)^{5}$
opposite of raising to the 5 th is to take the fifth root: $\sqrt[5]{2}=\sqrt[5]{(1+r)^{5}} \quad \sqrt[a]{\text { expression }^{a}}=$ expression

$$
\begin{aligned}
& \sqrt[5]{2}=1+r \\
& \sqrt[5]{2}-1=r \\
& r=1.148698-1=0.148698
\end{aligned}
$$

So $r \approx 14.87 \%$ (high rate in real terms..hard in real life)
Example 9: Time required to double an investment:
How long will it take for an investment to double in value if it earns 5% compounded annually? math 111 review: logs... $x=y^{t}$ and we want t : (t is in the exponent)
use logs: take natural log of both sides:

$$
\begin{aligned}
& \operatorname{In}(x)=\ln \left(y^{t}\right) \\
& \text { recall power rule for logs: } \operatorname{In}(\\
& \ln (x)=t \cdot \ln (y) \text { (bring } t \text { down) } \\
& \frac{\ln (x)}{\ln (y)}=t \text { divide by Iny }
\end{aligned}
$$

$$
\text { recall power rule for logs: } \operatorname{In}\left(\text { expression }^{a}\right)=a \ln \text { (expression) }
$$

$$
A=P(1+r / n)^{n t} \text { (not -nt) } \quad \text { "how long..." means use } t \text { as the variable }
$$

double means $A=2 P$

$$
\begin{aligned}
& 2 P=P=\left(1+\frac{0.05}{1}\right)^{t \cdot 1} \\
& 2 \frac{P}{P}=\frac{P}{P}(1+0.05)^{t} \Leftarrow \mathrm{t} \text { in exponent! } \\
& 2=(1.05)^{t}
\end{aligned}
$$

take the natural log of both sides(math 111 or 113...)
$\ln 2=\ln \left(1.05^{t}\right)$
bring t down: $\ln 2=t \cdot \ln (1.05)$
divide by $\ln 1.05: \frac{\ln 2}{\ln (1.05)}=t \quad \xrightarrow{\text { calculator work }} t=14.207$ years.
(b) If P is the initial investment and we want P to double using conti. compounding, we get...
$A=P e^{r t}$
$A=2 P$ (double P) plug in:
$r=0.05, t=$?

$$
\begin{aligned}
& 2 P=P e^{0.05 \cdot t} \\
& 2 \frac{P}{P}=\frac{P}{P} e^{0.05 \cdot t} \\
& 2=e^{0.05 \cdot t}
\end{aligned}
$$

natural \log of both sides, $\ln (2)=\ln \left(e^{0.05 \cdot t}\right)$

$$
\begin{aligned}
& \ln (2)=0.05 \cdot t(\text { power rule for logs and recall } \ln (e)=1) \\
& \frac{\ln (2)}{0.05}=t \Rightarrow \text { so } t=13.86 \text { years!! }
\end{aligned}
$$

most advanced math exercise today:
$A=P\left(1+\frac{r}{n}\right)^{n t} \quad n t=n u m b e r ~ o f ~ t i m e s ~ w e ~ c o m p o u n d, ~ r / n=t a x ~ r a t e ~ a t ~ e n d ~ o f ~ e a c h ~ p e r i o d ~$
solve for r :
r is inside parenthesis..
$\frac{A}{P}=\frac{P}{P}\left(1+\frac{r}{n}\right)^{n t}$ (divide by P)
$\frac{A}{P}=\left(1+\frac{r}{n}\right)^{n t}$ (we have nt in the top...)
to simplify things..set $\mathrm{t}=1$ (for no reason..but to simplify)
$\frac{A}{P}=\left(1+\frac{r}{n}\right)^{n}$ (set $\mathrm{t}=1$ to simplify..)
both sides are raised to the n ..opposite of raising to the n is raising to the $1 / \mathrm{n}$:
$\left(\frac{A}{P}\right)^{1 / n}=\left(1+\frac{r}{n}\right)^{n(1 / n)}$ pick up here
$\begin{array}{ll}\left(\frac{A}{P}\right)^{1 / n}=\left(1+\frac{r}{n}\right)^{n / n} & \begin{array}{l}\text { drop } 1 \text { and pare }\end{array} \\ \left(\frac{A}{P}\right)^{1 / n}=1+\frac{r}{n}\end{array}$
subtract 1: $\left(\frac{A}{P}\right)^{1 / n}-1=\frac{r}{n}$
multiply by n and on LHS two terms, so brackets:
$n\left[\left(\frac{A}{P}\right)^{1 / n}-1\right]=\frac{r}{\hbar} \cdot n$
$n\left[\left(\frac{A}{P}\right)^{1 / n}-1\right]=r$

What interest rate compounded quarterly is equivalent to an effective interest rate of 6.25% ?
What interest rate compounded quarterly is equivalent to an effective interest rate of 6.25% ?
Using simplest $\mathrm{A}=P+P r t=P(1+r t)$
compound interest formula: $A=P(1+r / n)^{n t} \quad$ quarterly means $n=4$
$A=P(1+r)(b / c t=1)$
$A=P(1+r / 4)^{4 \cdot 1} \quad(n=4, \mathrm{t}=1)$
$\mathrm{t}=1$
$\mathrm{P}=$ not given..so it has to vanish
effective interest $=6.25 \%=.0625$
$A=P(1+0.0625), \quad A=P(1+r / 4)^{4} \quad$ "..interest rate compounded quarterly...keep the r in
divide equations:

$$
\begin{aligned}
& \frac{A}{A}=\frac{P(1+0.0625)}{P(1+r / 4)^{4}} \\
& 1=\frac{1.0625}{(1+r / 4)^{4}}
\end{aligned}
$$

cross multiply: $1(1+r / 4)^{4}=1.0625$ $(1+r / 4)^{4} . r=$?
example..dividing equation:

$$
\begin{gathered}
2+4=6 \\
3+4=7
\end{gathered}
$$

divide them:
$\frac{2+4}{3+4}=\frac{6}{7}$ true!
take the 4th root: $\sqrt[4]{(1+r / 4)^{4}}=\sqrt[4]{1.0625}$

$$
\begin{aligned}
& 1+r / 4=\sqrt[4]{1.0625} \\
& \frac{r}{4}=\sqrt[4]{1.0625}-1 \\
& 4 \cdot \frac{r}{4}=4[\sqrt[4]{1.0625}-1] \\
& r=4[\sqrt[4]{1.0625}-1] \\
& \\
& =6.109 \% \text { to get } P \text { to become } A \text { after } n=4, \text { we have to use } 6.109 \% \text { rate. }
\end{aligned}
$$

To get the same using quarterly compounding, we use $\mathrm{r}=6.109 \%$.

