Math 200 Notes $11 / 6 / 2023$. Please be sure to put away all phones and computers and take very detailed notes.

1. Graph the system $\left\{\begin{array}{l}x+y \leq 2 \\ 2 x+y \leq 3 \\ x \geq 0 \\ y \geq 0\end{array} \quad \begin{array}{l}\text { (1) } 2 x+y=3 \\ \mathrm{x}=0: y=3, \quad(0,3) \\ y=0: 2 x=3 \rightarrow x=3 / 2,\left(\frac{3}{2}, 0\right)\end{array}\right.$
$\xrightarrow{1 \text { make equation }} x+y=2$
$\xrightarrow{2} x=0, y=2$
(3) $y=0, x=2$
(4) $(0,2),(2,0)$
(5) \leq has $=$, so solid line
(6) check with $(0,0)$:
$0+0 \leq 2$?
$0 \leq 2$ true!
(7) shade where $(0,0)$ is located
The region R is bounded. We can put inside a rectangle of definite size.
(4) \leq, so by $=$ part, solid line
(5) check with $(0,0)$:
$2 \cdot 0+0 \leq 3$?
$0 \leq 3$ true
(6) shade where $(0,0)$ is located
$x \geq 0$ becomes $x=0$
by the = part, draw solid line through $x=0$
by the > part, shade to the right
$y \geq 0$ becomes $y=0$ for boundary
by the = part, draw a solid line through $y=0$
by the > part, shade above this line
$y \mid x=0$
A solve the system:

$$
\begin{aligned}
& \text { Solve system A: }\left\{\begin{array} { l }
{ x + y = 2 } \\
{ 2 x + y = 3 }
\end{array} \xrightarrow { \text { solve top for } y } \left\{\begin{array}{l}
y=2-x \\
2 x+y=3
\end{array} \xrightarrow{\text { plug into bottom }} 2 x+2-x=3 \rightarrow x+2=3 \rightarrow x=1\right.\right. \\
& \text { intersection point of boundary lines (=) }
\end{aligned}
$$

The region \mathbf{R} is called the feasible region because it makes every inequality in the system true.
Example 11/Page 184: Nutt's nuts has 75 pounds of cashews and 120 pounds of peanuts. These are to be mixed in 1-pound packages as follon a low-grade mixture that contains 4 ounces of cashews and 12 ounces of peanuts and a high-grade mixture that contains 8 ounces of cashews and 8 ounces of peanuts.
(a) Use x to denote the number of packages of the low-grade mixture and use y to denote the number of packages of the high-grade mixture. Write a system of linear inequalities that describes the possible number of each kind of package.
$x \geq 0, y \geq 0$ (each is positive...number packages..can't have -4 packages)
$\left.\begin{array}{c}\begin{array}{c}\text { ounces of cashews } \\ \text { required for low-grade } \\ \text { mixture }\end{array}\end{array}\right) \cdot\binom{$ number of packages }{ of low-grade mixture }$+\left(\begin{array}{c}\text { ounces of cashews } \\ \text { required for high-grade } \\ \text { mixture }\end{array}\right) \cdot\binom{$ number of packages }{ of high grade mixture }≤ 75 pounds of cashews
ounces..not pounds..75lbs $\cdot\left(\frac{16 \mathrm{oz}}{1 \mathrm{lb}}\right)=1200 \mathrm{oz}$ (convert to ounces) $4 \cdot x+8 \cdot y \leq 1200$ (all in ounces..no pounds)
$\binom{$ ounces of peanuts }{ for low-grade }$\cdot\binom{$ number of packages }{ of low-grade mixture }$+\binom{$ ounces of peanutes for }{ high-grade mixture }$\cdot\binom{$ number of packages }{ of high-grade mixture }≤ 120 pounds of peanutes ounces conversion: $120 \mathrm{lbs} \cdot\left(\frac{16 \mathrm{oz}}{1 / \mathrm{b}}\right)=120 \cdot 16 \mathrm{oz}=1920 \mathrm{oz} \xrightarrow{\text { inequality becomes }} 12 x+8 y \leq 1920$ (all in ounces..no pounds)

$x=300-2 y \xrightarrow{\text { plug in } 3 x+2 y . .} 3(300-2 y)+2 y=480$
$900-6 y+2 y=480 \quad x=300-2 \cdot 105$
$-4 y=-420 \quad x=300-210 \quad$ lines meet
$y=105 \quad x=90 \quad$ at $(90,105)$
\mathbf{R} is the feasible region. Any combination of (x, y) from this region or fronh the boundaries makes the sytstem true.
Let's say we choose $x=20, y=10$: (no reason except they belong to \mathbf{R})
point A
check system:
$\left\{\begin{array}{l}4 \cdot 20+8 \cdot 10 \leq ? 1200 \text { TRUE } \\ 12 \cdot 20+8 \cdot 10 \leq 1920 \text { TRUE }\end{array}\right.$
$20 \geq 0$ true
$10 \geq 0$ true
the point $(20,10)$, for example, makes all the inequalities true!
We have enough ounces of peanuts and cashews to make 20 bags of the low-grade and 10 bags of the high-grade.

