Please put away everything that's a distraction and take very detailed notes.
Section 4.1/Linear Programming (there is no programming.it's just a name that's stuck...)
Def: A linear programming problem in two variables $x$ and $y$, consists of maximizing or minimizing an objective function $\mathrm{z}=A x+B y$ subject to a set of constraints expressed as inequalities.
Major Step 1: Write an expression for the quantity to be maximized or minimized (objective function)
Step 2: Determine all constraints and graph the set of feasible points.
Step 3. List the corner points of the set of feasible points.
picture:
Step 4. Determine the value of the objective function at each corner point.
Step 5. Select the maximum or minimum value of the objective function.
Example 1: Maximize and minimize the objective function: $z=x+5 y$
set of constraints: $\begin{cases}x+4 y \leq 12 & \leftarrow x+4 y=12, x=0 \rightarrow y=3 \ldots y=0 \rightarrow x=12 \\ x \leq 8 & \leftarrow x \leq 8, \text { solid line at } \mathrm{x}=8, \text { shade left } \mathrm{b} / \mathrm{c} \text { of }< \\ x+y \geq 2 & \leftarrow x+y \geq 2 \rightarrow x+y=2 \text {, interce pts: } y=2, x=2 \\ x \geq 0 & \leftarrow \text { line throgh } \mathrm{x}=0 \text { and shade right } \\ y \geq 0 & \leftarrow \text { line through } \mathrm{y}=0 \text { and shade above }\end{cases}$
check $z=x+5 y$ at each corner point: $(0,2): \quad z=0+5 \cdot 2=10$

## Andrew Huberman

$$
\left.\begin{array}{l}
\text { check } z=x+5 y \text { at each corner point: }(0,2): \quad z=0+5 \cdot 2=10 \\
\qquad \begin{array}{l}
(0,3): z=0+5 \cdot 3=15 \\
(8,1): z=8+5 \cdot 1=13 \\
(8,0): z=8+5 \cdot 0=8 \\
(2,0): z=2+5 \cdot 0=2
\end{array}
\end{array}\right\} \begin{aligned}
& \text { max value is } 15 \\
& \text { min value is } 2
\end{aligned}
$$


$x=8$

Business Summary: Plant 10 acres of $A$ and 30 acres of $B$ to make a max. profit of $\$ 4300$.
$(0,40): z=160 \cdot 0+90 \cdot 40=\$ 3600$ profit $(10,30): z=160 \cdot 10+90 \cdot 30=\$ 4300$ profit $(25,0): z=160 \cdot 25+90 \cdot 0=\$ 4000$ profit

