Math 111 Notes 11/6/2023. Take DETAILED notes and put away all phones and computers while taking notes.
Applications of Rational Functoions:
Example 4/Page 335:
A utility company (ConED) burns coal to make electricity. The cost C(in dollars) of removing p\% of the smokestack pollutants is given by $C=\frac{80000 p}{100-p}$, where $0 \leq p<100$. This is a rational function. $R(x)=\frac{N(x)}{D(x)}, N(p)=80000 p$ at $\mathrm{p}=100$: $C(100)=\frac{80000 \cdot 100}{100-100}=\frac{80000 \cdot 100}{0} \Leftarrow$ not defined for $\mathrm{p}=100$.domain: $0 \leq p<100$
p is the independent variable If $p=100$, we'd be saying we can remove all the pollutants, which is probably not realistic.
If $p=0$, then we get $C(0)=\frac{80000 \cdot 0}{100-0}=\frac{0}{100}=0 \Leftarrow$ To remove 0% of pollutans will cost you Odollars.
$R(p)=\frac{N(p)}{D(p)}$
$C(85)=\frac{80000 \cdot 85}{100-85} \xrightarrow{\text { remove } 85 \% \text { of pollutans }} \approx \$ 453,333 . \quad C(90)=\frac{80000 \cdot 90}{100-90}=\$ 720,000$.
What's the additional cost to go from 85% to 90% : $C(90)-C(85)=720,000-453,333=\$ 266,667$.
Example 5: Ultraviolet radiation:
For a person with sensitive skin, the amount of time T (in hours) the person can be exposed to the sun iwth minimal burning can be modeled by $T=\frac{0.37 s+23.8}{s}, 0<s \leq 120$, $s=$ Sunsor Scale reading (Sunsor Inc.)
$s=10: T(10)=\frac{0.37 \cdot 10+23.8}{10}=2.75 \mathrm{hrs} \quad T(s)=\frac{0.37 s+23.8}{s}$ rational function
$s=25: T(25)=\frac{0.37 \cdot 25+23.8}{25}=1.32 \mathrm{hrs} \quad N(s)=0.37 s+23.8$
$s=100: T(100)=\frac{0.37 \cdot 100+23.8}{100}=0.61 \mathrm{hrs} \quad D(s)=s$
$s=120($ last value from the domain of sb / c it says <or $=): T(120)=\frac{0.37 \cdot 120+23.8}{120}=0.57 \mathrm{hrs}$
Imagine $s=1000: T(1000)=\frac{0.37 \cdot 1000+23.8}{1000}=0.39$
Horizontal Asymptote is $y=0.37$
Imagein $s=10000$ (n ot real) : $\mathrm{T}(10000)=\frac{0.37 \cdot 10000+23.8}{10000}=0.37 \quad$ Shortest possible exposure time with minimal burning is .37 hrs.
. 3. (Hwork): Mr. Ewald decides to make and sell Left Handed Smoke Shifters (made up whatever). The function below gives the average cost (in dollars) per Smoke Shifter when x Smoke Shifters are produced.
$A(x)=\frac{3 x+450}{x}$, rational function $N(x)=3 x+450, D(x)=x \quad$ Average Cost $=\frac{\text { total cost }}{\text { number of units }}$
Determine $\mathrm{A}(15)$.. Average cost to produce 15 smoke shifters.
$A(15)=\frac{3 \cdot 15+450}{15}=\frac{45+450}{15}=\frac{495}{15}=33$
How many smoke shifters must be produced to reduce the average cost to $\$ 12$ each?

$x=$?	A
$\underline{3 x+450}=12 \leftarrow$ given	A
$x \quad=12 \leftarrow$ given	
$\underline{3 x+450}=\frac{12}{12} \xrightarrow{\text { any number is a } \mathrm{i} \text { sreally a/1 } 1}$	
x x $=\frac{1}{1}$	A
$1(3 x+450)=12 \cdot x$ (cross multiplication)	(in
$3 x+450=12 x$ (linear equation b/c x^{1})	
$450=12 x-3 x$	A
$450=9 x$	
$\frac{450}{9}=x \rightarrow x=50 \mathrm{We}$ have to make 50 sm	the average cost is 9 dollars.

Find the average cost to make 1000 smoke shifters:
$A(1000)=\frac{3 \cdot 1000+450}{1000}=3.45$
$A(10000)=\frac{3 \cdot 10000+450}{10000}=3.045$
(in MOM..input only two decimal places..3.05)
Horizontal asymptote:
As $x \rightarrow \infty, y \rightarrow 3$
$y=3$ If we made a huggggge number of smoke shifters, the average cost would be 3 per smoke shifter.
last example: Human Memory Model:
$P(n)=\frac{0.5+0.9(n-1)}{1+0.9(n-1)}, n>0 \quad n=$ number of trials of some task(how many times did we do this task)
$P=$ fraction of correct responses
Summary: As $n \rightarrow \infty$, $P \rightarrow 1$. We get better and better simply by repeating the task. No genius required!
$\begin{array}{llllll}n & 1 & 2 & 3 & 4 & 5\end{array}$
P
$P(1)=\frac{0.5+0.9(1-1)}{1+0.9(1-1)}=\frac{0.5+0.9(0)}{1+0.9(0)}=\frac{0.5}{1}=0.5$ (do something once. 50% chance it's correct)
$P(2)=\frac{0.5+0.9(2-1)}{1+0.9(2-1)}=0.74$ (tasks we can control at each stage)
$P(3)=\frac{0.5+0.9(3-1)}{1+0.9(3-1)}=0.82 \quad \ldots$ make $\mathrm{n}=10: P(10)=\frac{0.5+0.9(10-1)}{1+0.9(10-1)}=0.95$

