It's your job to send me a DETAILED list of any assignmetns you want to fix up. Everything must be wrapped up by t day of the final. After the final, I will not respond to anymore homework extension requests. If your grade in MyOpenN is far below 60 , you will fail the class and have to do it again.

Section 6.1: Systems of Equations:

1. $\left\{\begin{array}{l}2 x+y=5 \\ 3 x-2 y=4\end{array}\right.$, linear b/c it's x^{1} and y^{1}.
solve $2 \mathrm{x}+\mathrm{y}=5$ for y : $\mathrm{y}=5-2 \mathrm{x}$ (or x.makes no difference, but y is easier)

$$
\begin{aligned}
& \text { replace } \mathrm{y} \text { in equation } 2 \text { with } 5-2 \mathrm{x} \text { : } \\
& \begin{array}{ll}
3 x-2(5-2 x)=4 \Leftarrow \text { replace } \mathrm{y} \text { with } 5-2 x \text {...so method is called "substitution" } \\
3 x-10+4 x=4 & \text { Since } x=2, \text { and } y=5-2 x: \\
7 x-10=4 & y=5-2 \cdot 2=5-4=1 \\
7 x=14 & \text { point: }(2,1) \\
x=2 &
\end{array}
\end{aligned}
$$

2. solve $\left\{\begin{array}{l}x+y=4 \\ x-y=2\end{array}\right.$ add the equations b/c we have $+y$ and $-y: x+y+x=y=4+2$
addition/elimination
multiply equation 1 by $-1:-x-y=-4$

$$
\begin{aligned}
& 2 x=6 \\
& x=6 / 2=3
\end{aligned}
$$

add equation 2 :

$$
x-y=2 \Downarrow+
$$

$$
\begin{aligned}
& -2 y=-2 \\
& y=-2 /-2=1
\end{aligned}
$$

When we have $\left\{\begin{array}{l}a x+b y=c \\ d x+e y=f\end{array}, x\right.$ and y are the variables and each is raised to the 1 st, so it's called a linear system. substitution or addition/elimination
Non-Linear System: $\left\{\begin{array}{l}x^{2}-2 y=25 \\ x^{2}+5 y=25\end{array}\right.$ non-linear b/c we have x^{2}
Multiply equation 1 by -1 (every single term) $-x^{2}+2 y=-25$

Get x:
replace y with 0 in equation 1:(or 2)
$x^{2}-2 \cdot 0=25 \quad$ points are
$x^{2}=25$
$(+5,0),(-5,0)$

$$
0 x^{2}+7 y=0
$$

$$
\sqrt{x^{2}}= \pm \sqrt{25}
$$

$$
x= \pm 5
$$

solve the system: $\left\{\begin{array}{r}x^{2}-2 y=9 \\ x^{2}+5 y=9\end{array} \Rightarrow\right.$ multiply bottom by $-1:-x^{2}-5 y=-9$

$$
\frac{x^{2}-2 y=9}{-7 y=0} \text { tally line }
$$

Replace y with 0 in bottom equation:
$y=0$
$x^{2}+5(0)=9$
$x^{2}=9$
$\sqrt{x^{2}}= \pm \sqrt{9}$
$x= \pm 3$
points: $(-3,0),(3,0)$. Each equation like $x^{2}-2 y=9$ is a parabola, and so we have two points of intersection.

two points

no solutions

Solve the system by graphing: $\left\{\begin{array}{l}y=(x+3)+4 \\ y-4=(x+3)^{2}\end{array}\right.$
one point
A THING is not the same as the NAME by which its known. $\left\{\begin{array}{l}y=x+7 \\ y=(x+3)^{2}+4\end{array}\right.$ graph each RHS!
graph $y=x+7 \Rightarrow y=\frac{1}{1} x+7$ (slope is $1 / 1$ and y intercept is 7)
recall $1 / 1$ is same as $-1 /-1$
$\frac{1}{1}=\frac{-1}{-1}=1$
graph $y=(x+3)^{2}+4=[x-(-3)]^{2}+4$
parent parabola: $y=x^{2}$
basic parabola points:
$(-1,1) \rightarrow-3$ on $x \rightarrow(-4,1) \xrightarrow{\text { add } 4 \text { to } y}(-4,5)$ $(0,0) \rightarrow-3$ on $x \rightarrow(-3,0) \xrightarrow{\text { add } 4 \text { to } y}(-3,4)$ $(1,1) \rightarrow-3$ on $x \rightarrow(-2,1) \xrightarrow{\text { add } 4 \text { to } y}(-2,5)$
remember that $y=(x+3)^{2}+4$ is a parabola, so it should be curved! So solution points are $(-3,4)$ and $(-2,5)$

