Mean Absolute Deviation measures the dispersion within a data set.
example: $1,2,3,2,4,5,2,3$ (just some data) No drastically bigger or smaller values, so average!
find the mean: $\frac{1+2+3+2+4+5+2+3}{8}=\frac{22}{8}=2.75$
Sum of deviations is always 0 .
devations:
$1-2.75=-1.75$
$2-2.75=-0.75$
$3-2.75=0.25$
$2-2.75=-0.75$
$4-2.75=1.25$
$5-2.75=2.25$
Say we want to find the average deviation:
$2-2.75=-0.75$
$3-2.75=0.25$

$$
\frac{-1.75-0.75+0.25-0.75+1.25+2.25-0.75+0.25}{8}=\frac{0}{8}=0 \text { (useless value) }
$$

Since sum of deviations for ANY data set is 0 , this would always give us an average deviation of 0 .
take the deviations in absolute value:
$\frac{|1-2.75|+|2-2.275|+|3-2.75|+|2-2.75|+|4-2.75|+|5-2.75|+|2-2.75|+|3-2.75|}{8}$
≈ 0.566 On average, the values deviate by about .566 units.

Sample variance:

example: $s^{2}=\frac{\left(x_{1}-x_{\text {mean }}\right)^{2}+\left(x_{2}-x_{\text {mean }}\right)^{2}+\left(x_{3}-x_{\text {mean }}\right)^{2}+\ldots+\left(x_{n}-x_{\text {mean }}\right)^{2}}{n-1}$ (not n in bottom, $\mathrm{n}-1$) $\left(x_{1}-x_{\text {mean }}\right)^{2} \Leftarrow$ squared deviation from the average
$x_{\text {mean }}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} \quad$ A sample is obtained by reaching into a population and pulling some $\frac{n}{} \quad$ values out.
$s_{1}=4,6,8,10,12,14,16, \quad$ mean of $\mathrm{s}_{1}=\frac{4+6+8+10+12+14+16}{7}=\frac{70}{7}=10$
$s_{1}^{2}=\frac{(4-10)^{2}+(6-10)^{2}+(8-10)^{2}+(10-10)^{2}+(12-10)^{2}+(14-10)^{2}+(16-10)^{2}}{7-1}=18.67$ (measure of dispersion)
Notice 18.67 is bigger than each data value. Reason is we're squaring, so things like $6^{2}=36$.
$s_{2}=6,7,9,10,11,13,14$, mean of $s_{2}=\frac{6+7+9+10+11+13+14}{7}=10$ (same average as above)
$s_{2}^{2}=\frac{(6-10)^{2}+(7-10)^{2}+(9-10)^{2}+(10-10)^{2}+(11-10)^{2}+(13-10)^{2}+(14-10)^{2}}{7-1}$
$=\frac{(-4)^{2}+(-3)^{2}+(-1)^{2}+0^{2}+(1)^{2}+3^{2}+4^{2}}{6}=\frac{16+9+1+9+1+9+16}{6}=8.7$
Notice $s_{2}^{1}>s_{2}^{2}$, so first data set has a bigger dispersion than the second data set. The data in s_{1} is more spread than the data in s_{2}.

Sample Standard Deviation: Just take the square root of the sample variance.
$s=\sqrt{\frac{\left(x_{1}-x_{\text {mean }}\right)^{2}+\left(x_{2}-x_{\text {mean }}\right)^{2}+\ldots+\left(x_{n}-x_{\text {mean }}\right)^{2}}{n-1}}$
example: $s=1,2,3,2,4,5,2,6$, mean $\overline{\mathrm{s}}=\frac{1+2+3+2+4+5+2+6}{8}=3.1$
$s=\sqrt{\frac{(1-3.1)^{2}+(2-3.1)^{2}+(3-3.1)^{2}+(2-3.1)^{2}+(4-3.1)^{2}+(5-3.1)^{2}+(2-3.1)^{2}+(6-3.1)^{2}}{8-1}}=1.72$ (measures dispersion)
$b=1,3,3,5,5,6,7,1, \quad$ mean of $\mathrm{b}=\frac{1+3+3+5+5+6+7+1}{8}=3.9$ (bigger than 3.1)
$s=\sqrt{\frac{(1-3.9)^{2}+(3-3.9)^{2}+(3-3.9)^{2}+(5-3.9)^{2}+(5-3.9)^{2}+(6-3.9)^{2}+(7-3.9)^{2}+(1-3.9)^{2}}{8-1}}=2.23$
$2.23>1.72$, so second data set is more spread.
summary:
measures of central tendency: mean, median, mode, (use median with ouliers)
measures of dispersion: range, mean absolute deviation, variance, standard deviation (samples)
sample is obtained by reaching into a population and pulling a set of values out.
A good sample is one that's very representative of the largest possible set of opinions.
example: imagine we have a population of values: $1,2,3,4,1,2,4,3,5,6,7,9,6,6,5$
entire population
reach in and pull a sample out of size , say, $4: 1,4,6,5$ (sample of size 4)

$$
\left.\begin{array}{c}
\text { sample average }=\frac{1+4+6+5}{4}=4 \\
\frac{1+2+4+3+5+6+7+9+6+6+5}{15}=4.3
\end{array}\right\} \text { different values }
$$

grab another sample:
$3,4,1,5$: sample average $=\frac{3+4+1+5}{4}=3.25$ (different from 4 and 4.3)
average of sample averages: $\frac{4+3.25}{2}=3.625$
This is rigged because we know the population and the average. In real life, a population is like $320,000,000$ people, so we DON 'T KNOW the population average. In this case, we have to design our samples well to make sure they are as representative of the population as possible.
sample 3: $1,1,2,2$, average $=\frac{1+1+2+2}{4}=1.5$ (pop. average is 4)
In this case, the sample average is far from the pop. average of 4.

