Original Expression: x ln x // Given expression
Limit: lim(x → 0⁺) x ln x // Limit as x approaches 0 from the right
Step 1: Recognize the indeterminate form: 0 ⋅ (-∞) // Identifying the indeterminate form
Step 2: Rewrite the expression as a fraction:
a. Rewrite as ln x / (1/x) // Rewriting the expression
Step 3: Apply L’Hôpital’s Rule:
a. Differentiate the numerator: d/dx ln x = 1/x // Differentiating the numerator
b. Differentiate the denominator: d/dx (1/x) = -1/x² // Differentiating the denominator
c. Rewrite the limit with derivatives: lim(x → 0⁺) (1/x) / (-1/x²) // Rewriting the limit
d. Simplify the expression: x² / -x // Simplifying the expression
e. Further simplify: -x² / x = -x // Further simplifying
f. Evaluate the limit: lim(x → 0⁺) -x = 0 // Evaluating the limit
Final Limit: lim(x → 0⁺) x ln x = 0 // Final result