
$\times f(0.01-0.01 i)=\frac{1}{0.01-0.01 i}=50+50 i$
$f(-0.01-0.01 i)=\frac{1}{-0.01-0.01 i}=-50+50 i$

$$
\begin{array}{r}
f(-0.01-0.01 i)=\frac{1}{-0.01-c} \\
\times
\end{array}
$$

Illustration of an essential

$$
\text { As } z \rightarrow 0, \frac{1}{z} \rightarrow \infty
$$

singularity. As $z \rightarrow 0, \frac{1}{z} \rightarrow \infty$

$$
z=1 \text { is a removable singularity. }
$$

The singularity at $z=1$ is removable.
As the graph no the right shows, the values around $z=1$, from the left graph, are mapped in such a way that they stay closely together.
The effect of the $\frac{z-1}{z-1}$ in $\frac{z-1}{(z-1)(z+2)}$ is to
make the values stable around $z=1$.
We can see the output points are moving towards a certain value.
Thus the singualirty that arises from the presence of $z-1$ can be removed simply by redefining the value of the function to be equal to the limit that $f(z)$ approaches as $z \rightarrow 1$.

