
Given f entire,  M, R>0, and an integer n  1, such that |f(z)| M
n

z  for z  R  
Show that f is a polynomial of degree  n.  
Since f is entire, meaning differentiable everywhere, it can be represented as a power series, so  
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Fix r  R, for |z|=r>R , f z M nr  

By Cauchy's Estimates ,
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 0,  k  n

So f is a polynomial of degree  n

What this argument says is that all the coefficients after n vanish and so only the  
first n coefficients survive, giving us a polynomial.


