Given f entire, \exists M, R>0, and an integer n \geq 1, such that $|f(z)| \leq M |z|^n$ for |z| > RShow that f is a polynomial of degree $\leq n$.

Since f is entire, meaning differentiable everywhere, it can be represented as a power series, so

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \quad \forall z \in \mathbb{C} \quad \text{where } a_n = \frac{f^n(0)}{n!} \qquad , f(z) = a_0 + a_1 z + a_2 z^2 + \dots a_n z^n + \dots \text{ (terms here get cut off.)}$$
Fix $r > R$, for $|z| = r > R$, $|f(z)| \le Mr^n$
By Cauchy's Estimates, $\frac{|f^k(0)|}{k!} \le \frac{Mr^n}{r^k}$
So $\forall k \ge n$, we have $|a_k| = \frac{|f^k(0)|}{k!} \le \frac{Mr^n}{r^k} = \frac{M}{r^{k-n}}$

$$\lim_{k \to \infty} \frac{M}{r^{k-n}} = 0, \forall k \ge n$$
So f is a polynomial of degree $\le n$
What this argument says is that all the coefficients after n vanish and so only the

What this argument says is that all the coefficients after n vanish and so only the first n coefficients survive, giving us a polynomial.