Given f entire, $\exists \mathrm{M}, \mathrm{R}>0$, and an integer $\mathrm{n} \geq 1$, such that $|\mathrm{f}(\mathrm{z})| \leq M|z|^{n}$ for $|z|>R$
Show that f is a polynomial of degree $\leq n$.
Since f is entire, meaning differentiable everywhere, it can be represented as a power series, so
$f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad \forall z \in \mathbf{C} \quad$ where $a_{n}=\frac{f^{n}(0)}{n!} \quad, f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots a_{n} z^{n}+\ldots($ terms here get cut off $)$

Fix $r>R$, for $|z|=r>\mathrm{R},|f(z)| \leq M r^{n}$
By Cauchy's Estimates, $\frac{\left|f^{k}(0)\right|}{k!} \leq \frac{M r^{n}}{r^{k}}$
So $\forall \mathrm{k} \geq n$, we have $\left|a_{k}\right|=\frac{\left|f^{k}(0)\right|}{k!} \leq \frac{M r^{n}}{r^{k}}=\frac{M}{r^{k-n}}$
$\lim _{k \rightarrow \infty} \frac{M}{r^{k-n}}=0, \forall \mathrm{k} \geq n$
So f is a polynomial of degree $\leq n$
What this argument says is that all the coefficients after n vanish and so only the first n coefficients survive, giving us a polynomial.

