3 Vector Scalar Projection Calculator Step by Step Guide

3-Vector Scalar Projection Calculator

Vector A

Vector B

Understanding Scalar Projection

The scalar projection of a vector \( \textbf{A} \) onto another vector \( \textbf{B} \) is a measure of how much \( \textbf{A} \) “projects” onto \( \textbf{B} \). It is a scalar value that can be positive, negative, or zero.

The formula for calculating the scalar projection of \( \textbf{A} \) onto \( \textbf{B} \) is:

\[ \text{Scalar Projection} = \frac{\textbf{A} \cdot \textbf{B}}{||\textbf{B}||} \]

Where:

  • \( \textbf{A} \cdot \textbf{B} \) is the dot product of \( \textbf{A} \) and \( \textbf{B} \).
  • \( ||\textbf{B}|| \) is the magnitude of \( \textbf{B} \).

This calculator performs these calculations step-by-step, providing you with the scalar projection value.

Acceptable Input Formats

This calculator accepts decimal numbers in the following formats:

  • Whole Numbers: e.g., 1, 2, 3
  • Decimal Numbers: e.g., 1.2, 2.75, 3.333
  • Negative Numbers: e.g., -1, -1.5, -2.75
  • Zero: 0

Please note that fractions (e.g., 1/2, 2/3) are not supported and should be converted to decimal form before entering them. The calculator uses JavaScript’s parseFloat() function, which only understands decimal notation.