🔍 “Cracking the Limit Code: Your Step-by-Step Adventure to Solve an Exhilarating Math Puzzle!” 🎉

Unveiling Every Single Step: Limit of \( \frac{\sqrt{3x + 49} – 7}{x} \) as \( x \) Approaches 0

Step 1: The Direct Substitution Attempt

Starting with the original function:

\[ \lim_{{x \to 0}} \frac{\sqrt{3x + 49} – 7}{x} \]

Direct substitution gives:

\[ \frac{\sqrt{3 \cdot 0 + 49} – 7}{0} = \frac{\sqrt{49} – 7}{0} = \frac{0}{0} \]

This is indeterminate, so we’ll need another method.

Step 2: Rationalizing the Numerator

To eliminate the square root in the numerator, we’ll multiply by the conjugate:

\[ \frac{\sqrt{3x + 49} + 7}{\sqrt{3x + 49} + 7} \]

Performing the multiplication gives:

\[ \frac{\sqrt{3x + 49} \cdot \sqrt{3x + 49} + 7 \cdot \sqrt{3x + 49} – 7 \cdot \sqrt{3x + 49} – 7 \cdot 7}{x \cdot (\sqrt{3x + 49} + 7)} \]

Step 3: Simplifying

Combining terms, we get:

\[ \frac{3x + 49 – 49}{x(\sqrt{3x + 49} + 7)} = \frac{3x}{x(\sqrt{3x + 49} + 7)} \]

Now, the \(x\) terms can be canceled:

\[ \frac{3}{\sqrt{3x + 49} + 7} \]

Step 4: Final Direct Substitution

With the simplified form, let’s try plugging in \(x = 0\) again:

\[ \lim_{{x \to 0}} \frac{3}{\sqrt{3x + 49} + 7} = \frac{3}{\sqrt{0 + 49} + 7} = \frac{3}{\sqrt{49} + 7} = \frac{3}{7 + 7} = \frac{3}{14} \]

Step 5: The Limit is Revealed!

The limit of \( \frac{\sqrt{3x + 49} – 7}{x} \) as \( x \) approaches 0 is \( \frac{3}{14} \).

By meticulously breaking down each algebraic move, we’ve cracked the case. Math has never been so transparent!