assignment 7, question 4

eToTheXSquared4xPlus5Derivarive

 

Derivative of \( e^{x^2 + 4x + 5} \) Explained

Mathematical Steps Explanation
Identify \( f(g(x)) \) and \( g(x) \) \( f(g(x)) = e^{g(x)} \) and \( g(x) = x^2 + 4x + 5 \)
Find \( f'(g(x)) \) \( f'(g(x)) = e^{g(x)} \)
Find \( g'(x) \) \( g'(x) = 2x + 4 \)
Apply the Chain Rule \( \frac{d}{dx}[e^{x^2 + 4x + 5}] = e^{x^2 + 4x + 5} \times (2x + 4) \)
Simplify \( \frac{d}{dx}[e^{x^2 + 4x + 5}] = (2x + 4)e^{x^2 + 4x + 5} \)

Final Result

The derivative of \( e^{x^2 + 4x + 5} \) is \( (2x + 4)e^{x^2 + 4x + 5} \).

Derivative of \( e^{x^2 + 4x + 5} \) Explained

Mathematical Steps Explanation
Identify \( f(g(x)) \) and \( g(x) \) We start by identifying the inner function \( g(x) = x^2 + 4x + 5 \) and the outer function \( f(g(x)) = e^{g(x)} \).
Find \( f'(g(x)) \) The derivative of \( e^{g(x)} \) with respect to \( g(x) \) is \( e^{g(x)} \).
Find \( g'(x) \) The derivative of \( x^2 + 4x + 5 \) with respect to \( x \) is \( 2x + 4 \).
Apply the Chain Rule Using the chain rule, we find that \( \frac{d}{dx}[e^{x^2 + 4x + 5}] = e^{x^2 + 4x + 5} \times (2x + 4) \).
Simplify Finally, we simplify the expression to \( (2x + 4)e^{x^2 + 4x + 5} \).

Final Result

The derivative of \( e^{x^2 + 4x + 5} \) is \( (2x + 4)e^{x^2 + 4x + 5} \).