Detailed Differentiation of \( \ln(x^2) \) using the Chain Rule
Mathematical Steps | Explanation |
---|---|
Start with \( f(x) = \ln(x^2) \) | We begin with the function \( f(x) = \ln(x^2) \) that we want to differentiate. |
Identify \( f(g(x)) \) and \( g(x) \) | \( f(g(x)) = \ln(g(x)) \) and \( g(x) = x^2 \) |
Find \( f'(g(x)) \) | \( f'(g(x)) = \frac{1}{g(x)} = \frac{1}{x^2} \) |
Find \( g'(x) \) | \( g'(x) = 2x \) |
Apply the Chain Rule | \( \frac{d}{dx}[\ln(x^2)] = \frac{1}{x^2} \times 2x \) |
Simplify | \( \frac{d}{dx}[\ln(x^2)] = \frac{2}{x} \) |
Final Result
The derivative of \( \ln(x^2) \) is \( \frac{2}{x} \).