Learn to factor expressions like 1/9x² – 1/4 into (x/3 + 1/2)(x/3 – 1/2). Step-by-step guide to factoring differences of squares.

Original Expression: \(\frac{1}{16}x^2 – \frac{1}{25}\) // Given expression

Step 1: Identify the expression as a difference of squares // Recognize the pattern

Step 2: Write as \(\frac{x^2}{4^2} – \frac{1^2}{5^2}\) // Rewrite using squares of 4 and 5

Step 3: Rewrite as \(\left(\frac{x}{4}\right)^2 – \left(\frac{1}{5}\right)^2\) // Express as squares of fractions

Step 4: Apply the difference of squares formula: \(a^2 – b^2 = (a + b)(a – b)\) // Use the formula

Step 5: Substitute \(a = \frac{x}{4}\) and \(b = \frac{1}{5}\) into the formula // Plug in values

Step 6: \(\left(\frac{x}{4} + \frac{1}{5}\right)\left(\frac{x}{4} – \frac{1}{5}\right)\) // Apply the formula

Factored Expression: \(\left(\frac{x}{4} + \frac{1}{5}\right)\left(\frac{x}{4} – \frac{1}{5}\right)\) // Final factored form



 

Original Expression: \(\frac{1}{9}x^2 – \frac{1}{4}\) // Given expression

Step 1: Identify the expression as a difference of squares // Recognize the pattern

Step 2: Write as \(\frac{x^2}{3^2} – \frac{1^2}{2^2}\) // Rewrite using squares of 3 and 2

Step 3: Rewrite as \(\left(\frac{x}{3}\right)^2 – \left(\frac{1}{2}\right)^2\) // Express as squares of fractions

Step 4: Apply the difference of squares formula: \(a^2 – b^2 = (a + b)(a – b)\) // Use the formula

Step 5: Substitute \(a = \frac{x}{3}\) and \(b = \frac{1}{2}\) into the formula // Plug in values

Step 6: \(\left(\frac{x}{3} + \frac{1}{2}\right)\left(\frac{x}{3} – \frac{1}{2}\right)\) // Apply the formula

Factored Expression: \(\left(\frac{x}{3} + \frac{1}{2}\right)\left(\frac{x}{3} – \frac{1}{2}\right)\) // Final factored form



 

difference of squares fractions example