Derivatives introduction: defining, finding with limit definition, tangent line equations and graphs!!

Derivatives Motivating Understanding Finding Tangent Lines

Prelim example: f(x) = x² and find the slope at x=a.

Using limit formula, lim(h → 0) (f(a + h) – f(a)) / h

= lim(h → 0) ((a + h)² – a²) / h

= lim(h → 0) (a² + 2ah + h² – a²) / h

= lim(h → 0) (2ah + h²) / h

= lim(h → 0) h(2a + h) / h

= lim(h → 0) (2a + h)

= 2a + 0 = 2a

2a represents the slope on the graph of f at x=a.

Once we know the slope, we can find the equation of the tangent line. The line that touches the graph at x=a.

Let’s say we want the equation of the line at x = a = 1.

Slope at x=1 is 2(1) = 2. Equation of line y – y1 = m(x – x1)

Our m is 2. When x=1, f(1) = 1² = 1

y – 1 = 2(x – 1)

y – 1 = 2x – 2

y = 2x – 1

The equation of the tangent line is y = 2x – 1.




\[ \begin{align*} \text{Example 2 in book:} \\ \text{Let } f(x) &= \frac{3}{x} \text{ and find slope at } (3,1) \text{ and equation of tangent line at that point.} \\ \text{Slope at } x=3 &= \lim_{{h \to 0}} \frac{\frac{3}{{3 + h}} – \frac{3}{3}}{h} \\ &= \lim_{{h \to 0}} \frac{\frac{3}{{3 + h}} – 1}{h} \\ &= \lim_{{h \to 0}} \frac{\frac{3}{{3 + h}} – \frac{{3 + h}}{{3 + h}}}{h} \\ &= \lim_{{h \to 0}} \frac{\frac{{3 – (3 + h)}}{{3 + h}}}{h} \\ &= \lim_{{h \to 0}} \frac{\frac{{-h}}{{3 + h}}}{h} \\ &= \lim_{{h \to 0}} \left( \frac{{-h}}{{3 + h}} \cdot \frac{1}{h} \right) \\ &= \lim_{{h \to 0}} \frac{{-1}}{{3 + h}} \\ &= -\frac{1}{3} \\ \text{This represents the slope at } x=3 \text{ on the graph of } \frac{3}{x}. \\ \text{Equation of tangent line: } y – 1 &= -\frac{1}{3} (x – 3) \\ y &= -\frac{1}{3} x + 2 \end{align*} \]